ﻻ يوجد ملخص باللغة العربية
We study the effect of strong magnetic field on competing chiral and diquark order parameters in a regime of moderately dense quark matter. The inter-dependence of the chiral and diquark condensates through nonperturbative quark mass and strong coupling effects is analyzed in a two-flavor Nambu-Jona-Lasinio (NJL) model. In the weak magnetic field limit, our results agree qualitatively with earlier zero-field studies in the literature that find a critical coupling ratio $G_D/G_Ssim 1.1$ below which chiral or superconducting order parameters appear almost exclusively. Above the critical ratio, there exists a significant mixed broken phase region where both gaps are non-zero. However, a strong magnetic field $Bgtrsim 10^{18}$ G disrupts this mixed broken phase region and changes a smooth crossover found in the weak-field case to a first-order transition for both gaps at almost the same critical density. Our results suggest that in the two-flavor approximation to moderately dense quark matter, strong magnetic field enhances the possibility of a mixed phase at high density, with implications for the structure, energetics and vibrational spectrum of neutron stars.
We investigate the effect of turning on temperature for the charge neutral phase of two-flavor color superconducting (2SC) dense quark matter in presence of constant external magnetic field. Within the Nambu-Jona-Lasinio model, by tuning the diquark
Assuming that at sufficiently high densities the constituent quarks become relevant degrees of freedom, we study within the framework of a chiral quark model the influence of s-wave $K^-$ condensation on the quark-antiquark condensates. We find that,
We investigate chiral symmetry breaking and strong CP violation effects on the phase diagram of strongly interacting matter in presence of a constant magnetic field. The effect of magnetic field and strong CP violating term on the phase structure at
We investigate chiral symmetry breaking and strong CP violation effects in the phase diagram of strongly interacting matter. We demonstrate the effect of strong CP violating terms on the phase structure at finite temperature and densities in a 3-flav
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon sel