ﻻ يوجد ملخص باللغة العربية
We investigate the effect of turning on temperature for the charge neutral phase of two-flavor color superconducting (2SC) dense quark matter in presence of constant external magnetic field. Within the Nambu-Jona-Lasinio model, by tuning the diquark coupling strength, we study the interdependent evolution of the quark Bardeen-Cooper-Schrieffer gap and dynamical mass as functions of temperature and magnetic field. We find that magnetic field $B gtrsim 0.02$ GeV$^2$ ($10^{18}$ G) leads to anomalous temperature behavior of the gap in the gapless 2SC phase (moderately strong coupling), reminiscent of previous results in the literature found in the limit of weak coupling without magnetic field. The 2SC gap in the strong coupling regime is abruptly quenched at ultrahigh magnetic field due to the mismatched Fermi surfaces of up and down quarks imposed by charge neutrality and oscillation of the gap due to Landau level quantization. The dynamical quark mass also displays strong oscillation and magnetic catalysis at high magnetic field, although the latter effect is tempered by nonzero temperature. We discuss the implications for newly born compact stars with superconducting quark cores.
We study the effect of strong magnetic field on competing chiral and diquark order parameters in a regime of moderately dense quark matter. The inter-dependence of the chiral and diquark condensates through nonperturbative quark mass and strong coupl
This study is performed with the aim of gaining insights into the possible applicability of the quark-hadron continuity concept, not only in the idealized case of three-flavor symmetric quark matter, but also for the transition from neutron matter to
We study dynamical chiral symmetry breaking for quarks in the fundamental representation of $SU(N_c)$ for $N_f$ number of light quark flavors. We also investigate the phase diagram of quantum chromodynamics at finite temperature $T$ and/or in the pre
We study the effect of a large magnetic field on the chiral and diquark condensates in a regime of moderately dense quark matter. Our focus is on the inter-dependence of the two condensates through non-perturbative quark mass and strong coupling effe
We review important ideas on nuclear and quark matter description on the basis of high- temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical