ﻻ يوجد ملخص باللغة العربية
Topological semimetals are systems in which the conduction and the valence bands cross each other and this crossing is protected by topological constraints. These materials provide an intriguing test of fundamental theory and their exceptional physical properties promise a wide range of possible applications. Here we report a study of the thermoelectric power (S) for a single crystal of ZrSiS that is believed to be a topological nodal-line semimetal. We detect multiple quantum oscillations in the magnetic field dependence of S that are still visible at temperature as high as T = 100 K. Two of these oscillation frequencies are shown to arise from 3D and 2D bands, each with linear dispersion and the additional Berry phase expected theoretically.
We present thermoelectric power and resistivity measurements in the ferromagnet UGe$_2$ as a function of temperature and magnetic field. At low temperature, huge quantum oscillations are observed in the thermoelectric power as a function of the magne
ZrSiS has recently gained attention due to its unusual electronic properties: nearly perfect electron-hole compensation, large, anisotropic magneto-resistance, multiple Dirac nodes near the Fermi level, and an extremely large range of linear dispersi
We report a study of quantum oscillations (QO) in the magnetic torque of the nodal-line Dirac semimetal ZrSiS in the magnetic fields up to 35 T and the temperature range from 40 K down to 2 K, enabling high resolution mapping of the Fermi surface (FS
Quantum oscillation measurements can provide important information about the Fermi surface (FS) properties of strongly correlated metals. Here, we report a Shubnikov-de Haas (SdH) effect study on the pnictide parent compounds EuFe$_{2}$As$_{2}$ (Eu12
Electron correlation effects are studied in ZrSiS using a combination of first-principles and model approaches. We show that basic electronic properties of ZrSiS can be described within a two-dimensional lattice model of two nested square lattices. H