ﻻ يوجد ملخص باللغة العربية
Basic issues of the time-dependent density-functional theory are discussed, especially on the real-time calculation of the linear response functions. Some remarks on the derivation of the time-dependent Kohn-Sham equations and on the numerical methods are given.
We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provide
The soliton existence in sub-atomic many-nucleon systems is discussed. In many nucleon dynamics represented by the nuclear time-dependent density functional formalism, much attention is paid to energy and mass dependence of the soliton existence. In
Time-dependent covariant density functional theory with the successful density functional PCPK1 is developed in a three-dimensional coordinate space without any symmetry restrictions, and benchmark calculations for the 16O + 16O reaction are performe
Nonequilibrium Greens functions represent underutilized means of studying the time evolution of quantum many-body systems. In view of a rising computer power, an effort is underway to apply the Greens functions formalism to the dynamics of central nu
Following a previous paper [Y. Shi, Phys. Rev. C 98, 014329(2018)], we present an extension of the density-functional theory to allow for dynamic calculations based on the obtained static Hartree-Fock results. We perform extensive benchmark calculati