ﻻ يوجد ملخص باللغة العربية
A plasma beam dump uses the collective oscillations of plasma electrons to absorb the kinetic energy of a particle beam. In this paper, a modified passive plasma beam dump scheme is proposed using either a gradient or stepped plasma profile to maintain a higher decelerating gradient compared to a uniform plasma. The improvement is a result of the plasma wavelength change preventing the re-acceleration of low energy particles. Particle-in-cell simulation results show that both stepped and gradient plasma profiles can achieve improved energy loss compared to a uniform plasma for an electron bunch of parameters routinely achieved in laser wakefield acceleration.
Plasma-based accelerators offer the possibility to drive future compact light sources and high-energy physics applications. Achieving good beam quality, especially a small beam energy spread, is still one of the major challenges. For stable transport
We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to inv
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $mu$m can be achieved using an focusing gradient on the
We give direct experimental evidence for the observation of the full transverse self-modulation of a relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a density modulation resulting from radial wakefield ef
The proposed Beam Dump Facility (BDF) is foreseen to be located at the North Area of the SPS. It is designed to be able to serve both beam dump like and fixed target experiments. The SPS and the new facility would offer unique possibilities to enter