ترغب بنشر مسار تعليمي؟ اضغط هنا

Transmission spectra and valley processing of graphene and carbon nanotube superlattices with inter-valley coupling

215   0   0.0 ( 0 )
 نشر من قبل Fuming Xu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically investigate the electronic transport properties of graphene nanoribbons and carbon nanotubes with inter-valley coupling, e.g., in sqrt{3}N times sqrt{3}N and 3N times 3N superlattices. By taking the sqrt{3} times sqrt{3} graphene superlattice as an example, we show that tailoring the bulk graphene superlattice results in rich structural configurations of nanoribbons and nanotubes. After studying the electronic characteristics of the corresponding armchair and zigzag nanoribbon geometries, we find that the linear bands of carbon nanotubes can lead to the Klein tunnelling-like phenomenon, i.e., electrons propagate along tubes without backscattering even in the presence of a barrier. Due to the coupling between K and K valleys of pristine graphene by sqrt{3} times sqrt{3} supercells,we propose a valley-field-effect transistor based on the armchair carbon nanotube, where the valley polarization of the current can be tuned by applying a gate voltage or varying the length of the armchair carbon nanotubes.

قيم البحث

اقرأ أيضاً

We develop a theory of inter-valley Coulomb scattering in semiconducting carbon-nanotube quantum dots, taking into account the effects of curvature and chirality. Starting from the effective-mass description of single-particle states, we study the tw o-electron system by fully including Coulomb interaction, spin-orbit coupling, and short-range disorder. We find that the energy level splittings associated with inter-valley scattering are nearly independent of the chiral angle and, while smaller than those due to spin-orbit interaction, large enough to be measurable.
The decay of spin-valley states is studied in a suspended carbon nanotube double quantum dot via leakage current in Pauli blockade and via dephasing and decoherence of a qubit. From the magnetic field dependence of the leakage current, hyperfine and spin-orbit contributions to relaxation from blocked to unblocked states are identified and explained quantitatively by means of a simple model. The observed qubit dephasing rate is consistent with the hyperfine coupling strength extracted from this model and inconsistent with dephasing from charge noise. However, the qubit coherence time, although longer than previously achieved, is probably still limited by charge noise in the device.
We study transport in twisted bilayer graphene and show that electrostatic barriers can act as valley splitters, where electrons from the $K$ ($K$) valley are transmitted only to e.g. the top (bottom) layer, leading to valley-layer locked currents. W e show that such a valley splitter is obtained when the barrier varies slowly on the moire scale and induces a Lifshitz transition across the junction, i.e. a change in the Fermi surface topology. Furthermore, we show that for a given valley the reflected and transmitted current are transversely deflected, as time-reversal symmetry is effectively broken in each valley separately, resulting in valley-selective transverse focusing at zero magnetic field.
In graphene superlattices, bulk topological currents can lead to long-range charge-neutral flow and non-local resistance near Dirac points. A ballistic version of these phenomena has never been explored. Here, we report transport properties of ballis tic graphene superlattices. This allows us to study and exploit giant non-local resistances with a large valley Hall angle without a magnetic field. In the low-temperature regime, a crossover occurs toward a new state of matter, referred to as a quantum valley Hall state (qVHS), which is an analog of the quantum Hall state without a magnetic field. Furthermore, a non-local resistance plateau, implying rigidity of the qVHS, emerges as a function of magnetic field, and the collapse of this plateau is observed, which is considered as a manifestation of valley/pseudospin magnetism.
Monolayer transition metal dichalcogenides (TMDs) hold great promise for future information processing applications utilizing a combination of electron spin and valley pseudospin. This unique spin system has led to observation of the valley Zeeman ef fect in neutral and charged excitonic resonances under applied magnetic fields. However, reported values of the trion valley Zeeman splitting remain highly inconsistent across studies. Here, we utilize high quality hBN encapsulated monolayer WSe$_2$ to enable simultaneous measurement of both intervalley and intravalley trion photoluminescence. We find the valley Zeeman splitting of each trion state to be describable only by a combination of three distinct g-factors, one arising from the exciton-like valley Zeeman effect, the other two, trion specific, g-factors associated with recoil of the excess electron. This complex picture goes significantly beyond the valley Zeeman effect reported for neutral excitons, and eliminates the ambiguity surrounding the magneto-optical response of trions in tungsten based TMD monolayers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا