ﻻ يوجد ملخص باللغة العربية
We numerically investigate the electronic transport properties of graphene nanoribbons and carbon nanotubes with inter-valley coupling, e.g., in sqrt{3}N times sqrt{3}N and 3N times 3N superlattices. By taking the sqrt{3} times sqrt{3} graphene superlattice as an example, we show that tailoring the bulk graphene superlattice results in rich structural configurations of nanoribbons and nanotubes. After studying the electronic characteristics of the corresponding armchair and zigzag nanoribbon geometries, we find that the linear bands of carbon nanotubes can lead to the Klein tunnelling-like phenomenon, i.e., electrons propagate along tubes without backscattering even in the presence of a barrier. Due to the coupling between K and K valleys of pristine graphene by sqrt{3} times sqrt{3} supercells,we propose a valley-field-effect transistor based on the armchair carbon nanotube, where the valley polarization of the current can be tuned by applying a gate voltage or varying the length of the armchair carbon nanotubes.
We develop a theory of inter-valley Coulomb scattering in semiconducting carbon-nanotube quantum dots, taking into account the effects of curvature and chirality. Starting from the effective-mass description of single-particle states, we study the tw
The decay of spin-valley states is studied in a suspended carbon nanotube double quantum dot via leakage current in Pauli blockade and via dephasing and decoherence of a qubit. From the magnetic field dependence of the leakage current, hyperfine and
We study transport in twisted bilayer graphene and show that electrostatic barriers can act as valley splitters, where electrons from the $K$ ($K$) valley are transmitted only to e.g. the top (bottom) layer, leading to valley-layer locked currents. W
In graphene superlattices, bulk topological currents can lead to long-range charge-neutral flow and non-local resistance near Dirac points. A ballistic version of these phenomena has never been explored. Here, we report transport properties of ballis
Monolayer transition metal dichalcogenides (TMDs) hold great promise for future information processing applications utilizing a combination of electron spin and valley pseudospin. This unique spin system has led to observation of the valley Zeeman ef