ترغب بنشر مسار تعليمي؟ اضغط هنا

Room temperature single photon emission from oxidized tungsten disulphide multilayers

126   0   0.0 ( 0 )
 نشر من قبل Trong Toan Tran Mr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two dimensional systems offer a unique platform to study light matter interaction at the nanoscale. In this work we report on robust quantum emitters fabricated by thermal oxidation of tungsten disulphide multilayers. The emitters show robust, optically stable, linearly polarized luminescence at room temperature, can be modeled using a three level system, and exhibit moderate bunching. Overall, our results provide important insights into understanding of defect formation and quantum emitter activation in 2D materials.

قيم البحث

اقرأ أيضاً

217 - S. Zhao , J. Lavie , L. Rondin 2018
In the field of condensed matter, graphene plays a central role as an emerging material for nanoelectronics. Nevertheless, graphene is a semimetal, which constitutes a severe limitation for some future applications. Therefore, a lot of efforts are be ing made to develop semiconductor materials whose structure is compatible with the graphene lattice. In this perspective, little pieces of graphene represent a promising alternative. In particular, their electronic, optical and spin properties can be in principle controlled by designing their size, shape and edges. As an example, graphene nanoribbons with zigzag edges have localized spin polarized states. Likewise, singlet-triplet energy splitting can be chosen by designing the structure of graphene quantum dots. Moreover, bottom-up molecular synthesis put these potentialities at our fingertips. Here, we report on a single emitter study that directly addresses the intrinsic properties of a single graphene quantum dot. In particular, we show that graphene quantum dots emit single photons at room temperature with a high purity, a high brightness and a good photostability. These results pave the way to the development of new quantum systems based on these nanoscale pieces of graphene.
Magnetic skyrmions are nanoscale topological spin structures offering great promise for next-generation information storage technologies. The recent discovery of sub-100 nm room temperature (RT) skyrmions in several multilayer films has triggered vig orous efforts to modulate their physical properties for their use in devices. Here we present a tunable RT skyrmion platform based on multilayer stacks of Ir/Fe/Co/Pt, which we study using X-ray microscopy, magnetic force microscopy and Hall transport techniques. By varying the ferromagnetic layer composition, we can tailor the magnetic interactions governing skyrmion properties, thereby tuning their thermodynamic stability parameter by an order of magnitude. The skyrmions exhibit a smooth crossover between isolated (metastable) and disordered lattice configurations across samples, while their size and density can be tuned by factors of 2 and 10 respectively. We thus establish a platform for investigating functional sub-50 nm RT skyrmions, pointing towards the development of skyrmion-based memory devices.
Solid state single photon sources with Fourier Transform (FT) limited lines are among the most crucial constituents of photonic quantum technologies and have been accordingly the focus of intensive research over the last several decades. However, so far, solid state systems have only exhibited FT limited lines at cryogenic temperatures due to strong interactions with the thermal bath of lattice phonons. In this work, we report a solid state source that exhibits FT limited lines measured in photo luminescence excitation (sub 100 MHz linewidths) from 3K-300K. The studied source is a color center in the two-dimensional hexagonal boron nitride and we propose that the centers decoupling from phonons is a fundamental consequence of materials low dimensionality. While the centers luminescence lines exhibit spectral diffusion, we identify the likely source of the dffusion and propose to mitigate it via dynamic spectral tuning. The discovery of FT-limited lines at room temperature, which once the spectral diffusion is controlled, will also yield FT-limited emission. Our work motivates a significant advance towards room temperature photonic quantum technologies and a new research direction in the remarkable fundamental properties of two-dimensional materials.
78 - J.X. Hu , J. Gou , M. Yang 2021
Disorder-induced magnetoresistance (MR) effect is quadratic at low perpendicular magnetic fields and linear at high fields. This effect is technologically appealing, especially in the two-dimensional (2D) materials such as graphene, since it offers p otential applications in magnetic sensors with nanoscale spatial resolution. However, it is a great challenge to realize a graphene magnetic sensor based on this effect because of the difficulty in controlling the spatial distribution of disorder and enhancing the MR sensitivity in the single-layer regime. Here, we report a room-temperature colossal MR of up to 5,000% at 9 T in terraced single-layer graphene. By laminating single-layer graphene on a terraced substrate, such as TiO2 terminated SrTiO3, we demonstrate a universal one order of magnitude enhancement in the MR compared to conventional single-layer graphene devices. Strikingly, a colossal MR of >1,000% was also achieved in the terraced graphene even at a high carrier density of ~1012 cm-2. Systematic studies of the MR of single-layer graphene on various oxide- and non-oxide-based terraced surfaces demonstrate that the terraced structure is the dominant factor driving the MR enhancement. Our results open a new route for tailoring the physical property of 2D materials by engineering the strain through a terraced substrate.
Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of th ese materials. However, the exciton-phonon coupling strength has not been measured at room temperature. Here, we develop two-dimensional micro-spectroscopy to determine exciton-phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time T, induced by the coupling between the A exciton and the A1 optical phonon. Analysis of two-dimensional beating maps combined with simulations provides the exciton-phonon coupling. The Huang-Rhys factor of ~1 is larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton-phonon coupling also in other heterogeneous semiconducting systems with a spatial resolution ~260 nm, and will provide design-relevant parameters for the development of optoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا