ﻻ يوجد ملخص باللغة العربية
We study ultrastrong-coupling quantum-phase-transition phenomena in a few-qubit system. In the one-qubit case, three second-order transitions occur and the Goldstone mode emerges under the condition of ultrastrong-coupling strength. Moreover, a first-order phase transition occurs between two different superradiant phases. In the two-qubit case, a two-qubit Hamiltonian with qubit-qubit interactions is analyzed fully quantum mechanically. We show that the quantum phase transition is inhibited even in the ultrastrong-coupling regime in this model. In addition, in the three-qubit model, the superradiant quantum phase transition is retrieved in the ultrastrong-coupling regime. Furthermore, the N-qubit model with U(1) symmetry is studied and we find that the superradiant phase transition is inhibited or restored with the qubit-number parity.
We present an experimentally feasible scheme to implement holonomic quantum computation in the ultrastrong-coupling regime of light-matter interaction. The large anharmonicity and the Z2 symmetry of the quantum Rabi model allow us to build an effecti
We study a circuit QED setup where multiple superconducting qubits are ultrastrongly coupled to a single radio-frequency resonator. In this extreme parameter regime of cavity QED the dynamics of the electromagnetic mode is very slow compared to all o
Superconducting quantum circuits possess the ingredients for quantum information processing and for developing on-chip microwave quantum optics. From the initial manipulation of few-level superconducting systems (qubits) to their strong coupling to
The interaction between an atom and the electromagnetic field inside a cavity has played a crucial role in the historical development of our understanding of light-matter interaction and is a central part of various quantum technologies, such as lase
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded SQUID. The anharmonic spectrum of the qubit-resonator sy