ترغب بنشر مسار تعليمي؟ اضغط هنا

Isobaric-isothermal molecular dynamics computer simulations of the properties of water-1,2-dimethoxyethane model mixtures

74   0   0.0 ( 0 )
 نشر من قبل Orest Pizio
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Isothermal-isobaric molecular dynamics simulations have been performed to examine a broad set of properties of the model water-1,2-dimethoxyethane (DME) mixture as a function of composition. The SPC-E and TIP4P-Ew water models and the modified TraPPE model for DME were applied. Our principal focus was to explore the trends of behaviour of the structural properties in terms of the radial distribution functions, coordination numbers and number of hydrogen bonds between molecules of different species, and of conformations of DME molecules. Thermodynamic properties, such as density, molar volume, enthalpy of mixing and heat capacity at constant pressure have been examined. Finally, the self-diffusion coefficients of species and the dielectric constant of the system were calculated and analyzed.



قيم البحث

اقرأ أيضاً

Isothermal-isobaric molecular dynamics simulations are used to examine the microscopic structure and some properties of water-methanol liquid mixture. The TIP4P/2005 and SPC/E water models are combined with the united atom TraPPE and the all-atom for ce field model for methanol. Our principal focus is to evaluate the quality of predictions of different combinations of model force fields concerning the composition dependence of basic properties of this system. Specifically, we explored the composition effects on density, excess molar volume and excess entropy, as well as on the surface tension and static dielectric constant. In addition, the structural properties are described in terms of the coordination numbers and the average number of hydrogen bonds between molecules of constituent species. Finally, the composition dependence of self-diffusion coefficients of the species is evaluated. All theoretical predictions are tested with respect to experimental data.
The properties of model solutions consisting of a solute --- single curcumin molecule in water, methanol and dimethyl sulfoxide solvents have been studied using molecular dynamics (MD) computer simulations in the isobaric-isothermal ensemble. The uni ted atom OPLS force field (OPLS-UA) model for curcumin molecule proposed by us recently [J. Mol. Liq., 2016, 223, 707] in combination with the SPC/E water, and the OPLS-UA type models for methanol and dimethyl sulfoxide have been applied. We have described changes of the internal structure of the solute molecule induced by different solvent media in very detail. The pair distribution functions between particular fragments of a solute molecule with solvent particles have been analyzed. Statistical features of the hydrogen bonding between different species were explored. Finally, we have obtained a self-diffusion coefficient of curcumin molecules in three model solvents.
We have investigated thermodynamic and dynamic properties as well as the dielectric constant of water-metha-nol model mixtures in the entire range of composition by using constant pressure molecular dynamics simulations at ambient conditions. The SPC /E and TIP4P/Ew water models are used in combination with the OPLS united atom modelling for methanol. Changes of the average number of hydrogen bonds between particles of different species and of the fractions of differently bonded molecules are put in correspondence with the behavior of excess mixing volume and enthalpy, of self-diffusion coefficients and rotational relaxation times. From the detailed analyses of the results obtained in this work, we conclude that an improvement of the description of an ample set of properties of water-methanol mixtures can possibly be reached, if a more sophisticated, carefully parameterized, e.g., all atom, model for methanol is used. Moreover, exploration of parametrization of the methanol force field, with simultaneous application of different combination rules for methanol-water cross interactions, is required.
91 - H. Dominguez , O. Pizio 2017
Isothermal-isobaric molecular dynamics simulations have been performed to examine an ample set of properties of the model water-N,N-dimethylformamide (DMF) mixture as a function of composition. The SPC-E and TIP4P-Ew water models together with two un ited atom models for DMF [Chalaris M., Samios J., J. Chem. Phys., 2000, 112, 8581; Cordeiro J., Int. J. Quantum Chem., 1997, 65, 709] were used. Our principal analyses concern the behaviour of structural properties in terms of radial distribution functions, and the number of hydrogen bonds between molecules of different species as well as thermodynamic properties. Namely, we explore the density, excess mixing molar volume and enthalpy, the heat capacity and excess mixing heat capacity. Finally, the self-diffusion coefficients of species and the dielectric constant of the system are discussed. In addition, surface tension of water-DMF mixtures has been calculated and analyzed.
Isothermal-isobaric molecular dynamics simulations are used to examine the microscopic structure and other properties of a model solution consisting of NaCl salt dissolved in water-methanol mixture. The SPC/E water model and the united atom model for methanol are combined with the force field for ions by Dang [J. Amer. Chem. Soc., 1995, 117, 6954] to describe the entire system. Our principal focus is to study the effects of two variables, namely, the solvent composition and ion concentrations on the solutions density, on the structural properties, self-diffusion coefficients of the species and the dielectric constant. Moreover, we performed a detailed analysis of the first coordination numbers of the species. Trends of the behaviour of the average number of hydrogen bonds between solvent molecules are evaluated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا