ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Brain Oxygenation Wave-forms with Near Infrared Spectroscopy (NIRS)

204   0   0.0 ( 0 )
 نشر من قبل Alexander Gersten
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The technique of near infrared spectroscopy (NIRS) allows to measure the oxygenation of the brain tissue. The particular problems involved in detecting regional brain oxygenation (rSO2) are discussed. The dominant chromophore (light absorber) in tissue is water. Only in the NIR light region of 650-1000 nm, the overall absorption is sufficiently low, and the NIR light can be detected across a thick layer of tissues, among them the skin, the scull and the brain. In this region, there are many absorbing light chromophores, but only three are important as far as the oxygenation is concerned. They are the hemoglobin (HbO2), the deoxy-hemoglobin (Hb) and cytochrome oxidase (CtOx). The devices that were used in our experiments were : Somanetics INVOS Brain Oximeter (IBO) and Toomims HEG spectrophotometer. The performances of both devices were compared including their merits and drawbacks. The IBO use for research has two drawbacks: the sampling rate is too small and the readings are limited to only two significant digits. The HEG device does not have these drawbacks, but is not developed sufficiently at this time to measure rSO2. We have measured the HEG readings and compared them with the rSO2 readings of the IBO. Results of an experiment are presented whose aim is to explore the relationship between respiration and cerebral oxygenation. Measurements of end tidal CO2 (EtCO2) were taken simultaneously with cerebral oxygen saturation (rSO2) using the INVOS Cerebral Oximeter of Somanetics. Due to the device limitations we could explore only subjects who could perform with a breathing rate of around 2/min or less. The results of all subjects clearly show a periodic change of cerebral oxygenation with the same period as the breathing exercises.



قيم البحث

اقرأ أيضاً

The fundamentals of near infrared spectroscopy (NIRS) are reviewed. This technique allows to measure the oxygenation of the brain tissue. The particular problems involved in detecting regional brain oxygenation (rSO2) are discussed. The dominant chro mophore (light absorber) in tissue is water. Only in the NIR light region of 650-1000 nm, the overall absorption is sufficiently low, and the NIR light can be detected across a thick layer of tissues, among them the skin, the scull and the brain. In this region, there are many absorbing light chromophores, but only three are important as far as the oxygenation is concerned. They are the hemoglobin (HbO2), the deoxy-hemoglobin (Hb) and cytochrome oxidase (CtOx). In the last 20 years there was an enormous growth in the instrumentation and applications of NIRS. . The devices that were used in our experiments were : Somaneticss INVOS Brain Oximeter (IBO) and Toomims HEG spectrophotometer. The performances of both devices were compared including their merits and drawbacks. The IBO is based on extensive efforts of an R&D group to develop a reliable device, which measures well the rSO2. It is now used efficiently in operating rooms, saving human lives and expenses. Its use for research however has two drawbacks: the sampling rate is too small and the readings are limited to only two significant digits. The HEG device does not have these drawbacks, but is not developed sufficiently at this time to measure rSO2. We have measured the HEG readings and compared them with the rSO2 readings of the IBO. Our findings show that the HEG can be used to measure relative changes of rSO2.
Background: The role of neonatal pain on the developing nervous system is not completely understood, but evidence suggests that sensory pathways are influenced by an infants pain experience. Research has shown that an infants previous pain experience s lead to an increased, and likely abnormal, response to subsequent painful stimuli. We are working to improve neonatal pain detection through automated devices that continuously monitor an infant. The current study outlines some of the initial steps we have taken to evaluate Near Infrared Spectroscopy (NIRS) as a technology to detect neonatal pain. Our findings may provide neonatal intensive care unit (NICU) practitioners with the data necessary to monitor and perhaps better manage an abnormal pain response. Methods: A prospective pilot study was conducted to evaluate nociceptive evoked cortical activity in preterm infants. NIRS data were recorded for approximately 10 minutes prior to an acute painful procedure and for approximately 10 minutes after the procedure. Individual data collection events were performed at a weekly maximum frequency. Eligible infants included those admitted to the Tampa General Hospital (TGH) NICU with a birth gestational age of less than 37 weeks. Results: A total of 15 infants were enrolled and 25 individual studies were completed. Analysis demonstrated a statistically significant difference between the median of the pre- and post-painful procedure data sets in each infants first NIRS collection (p value = 0.01). Conclusions: Initial analysis shows NIRS may be useful in detecting acute pain. An acute painful procedure is typically followed by a negative deflection in NIRS readings.
During the first years of life, the human brain undergoes dynamic spatially-heterogeneous changes, involving differentiation of neuronal types, dendritic arborization, axonal ingrowth, outgrowth and retraction, synaptogenesis, and myelination. To bet ter quantify these changes, this article presents a method for probing tissue microarchitecture by characterizing water diffusion in a spectrum of length scales, factoring out the effects of intra-voxel orientation heterogeneity. Our method is based on the spherical means of the diffusion signal, computed over gradient directions for a fixed set of diffusion weightings (i.e., b-values). We decompose the spherical mean series at each voxel into a spherical mean spectrum (SMS), which essentially encodes the fractions of spin packets undergoing fine- to coarse-scale diffusion processes, characterizing hindered and restricted diffusion stemming respectively from extra- and intra-neurite water compartments. From the SMS, multiple orientation distribution invariant indices can be computed, allowing for example the quantification of neurite density, microscopic fractional anisotropy ($mu$FA), per-axon axial/radial diffusivity, and free/restricted isotropic diffusivity. We show maps of these indices for baby brains, demonstrating that microscopic tissue features can be extracted from the developing brain for greater sensitivity and specificity to development related changes. Also, we demonstrate that our method, called spherical mean spectrum imaging (SMSI), is fast, accurate, and can overcome the biases associated with other state-of-the-art microstructure models.
We tested the hypothesis that simple exercises may significantly increase cerebral blood flow (CBF) and/or cerebral oxygenation. Eighteen subjects ranging in age from nineteen to thirty nine participated in a four-stage study during which measurement s of end tidal CO_2 (EtCO2 - by capnometer) and local brain oxygenation (by near-infrared spectroscopy (NIRS) sensor) were taken. The four stages were 1) baseline, 2) breathing exercises, 3) solving an arithmetic problem, and 4) biofeedback. During the breathing exercises there was a significant increase in EtCO2 indicating a significant increase in global CBF. The increase in global CBF was estimated on the basis of a theoretical model. During the arithmetic and biofeedback tasks there was a significant increase in the local (Fp1) oxygenation, but it varied between the different participants. The results may lead to new clinical applications of CBF and brain oxygenation monitoring and behavioral control. We foresee future more detailed investigations in the control of CO2 in brain circulation in specific regions of the brain involved in cognition and memory.
The molecular ion HfF$^+$ is the chosen species for a JILA experiment to measure the electron electric dipole moment (eEDM). Detailed knowledge of the spectrum of HfF is crucial to prepare HfF$^+$ in a state suitable for performing an eEDM measuremen tcite{Leanhardt}. We investigated the near-infrared electronic spectrum of HfF using laser-induced fluorescence (LIF) of a supersonic molecular beam. We discovered eight unreported bands, and assign each of them unambiguously, four to vibrational bands belonging to the transition $[13.8]0.5 leftarrow X1.5$, and four to vibrational bands belonging to the transition $[14.2]1.5 leftarrow X1.5$. Additionally, we report an improved measurement of vibrational spacing of the ground state, as well as anharmonicity $omega_e x_e$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا