ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of Unshunted and Resistively Shunted Nb/AlOx-Al/Nb Josephson Junctions With Critical Current Densities from 0.1 mA/{mu}m^2 to 1 mA/{mu}m^2

301   0   0.0 ( 0 )
 نشر من قبل Sergey Tolpygo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated current-voltage characteristics of unshunted and externally shunted Josephson junctions (JJs) with high critical current densities, Jc, in order to extract their basic parameters and statistical characteristics for JJ modeling in superconducting integrated circuits and to assess their potential for future technology nodes. Nb/AlOx-Al/Nb JJs with diameters from 0.5 {mu}m to 6 {mu}m were fabricated using a fully planarized process with Mo or MoNx thin-film shunt resistors with sheet resistance Rsq = 2 {Omega}/sq and Rsq = 6 {Omega}/sq, respectively. We used our standard MIT LL process SFQ5ee to fabricate JJs with Jc = 0.1 mA/{mu}m^2 and our new process SFQ5hs to make JJs with Jc = 0.2 mA/{mu}m^2 and higher current densities up to about 1 mA/{mu}m^2. Using LRC resonance features on the I-V characteristics of shunted JJs, we extract the inductance associated with molybdenum shunt resistors of 1.4 pH/sq. The main part this inductance, about 1.1 pH/sq, is the inductance of the 40-nm Mo resistor film, while the geometrical inductance of superconducting Nb wiring contributes the rest. We attribute this large inductance to kinetic inductance arising from the complex conductivity of a thin normal-metal film in an electromagnetic field with angular frequency {omega}, {sigma}({omega})={sigma}0/(1+i{omega}{tau}), where {sigma}0 is the static conductivity and {tau} the electron scattering time. Using a resonance in a large-area unshunted high-Jc junction excited by a resistively coupled small-area shunted JJ, we extract the Josephson plasma frequency and specific capacitance of high-Jc junctions in 0.1 to 1 mA/{mu}m^2 Jc range. We also present data on Jc targeting and JJ critical current spreads. We discuss using 0.2-mA/{mu}m^2 JJs in VLSI Single Flux Quantum circuits and 0.5-mA/{mu}m^2 JJs in high-density integrated circuits without shunt resistors.



قيم البحث

اقرأ أيضاً

Highly transmissive ballistic junctions are demonstrated between Nb and the two-dimensional electron gas formed at an InAs/AlSb heterojunction. A reproducible fabrication protocol is presented yielding high critical supercurrent values. Current-volta ge characteristics were measured down to 0.4 K and the observed supercurrent behavior was analyzed within a ballistic model in the clean limit. This investigation allows us to demonstrate an intrinsic interface transmissivity approaching 90%. The reproducibility of the fabrication protocol makes it of interest for the experimental study of InAs-based superconductor-semiconductor hybrid devices.
For high-performance superconducting quantum devices based on Josephson junctions (JJs) decreasing lateral sizes is of great importance. Fabrication of sub-mu m JJs is challenging due to non-flat surfaces with step heights of up to several 100 nm gen erated during the fabrication process. We have refined a fabrication process with significantly decreased film thicknesses, resulting in almost flat surfaces at intermediate steps during the JJ definition. In combination with a mix-&-match process, combining electron-beam lithography (EBL) and conventional photolithography, we can fabricate JJs with lateral dimensions down to 0.023 mu m^2. We propose this refined process as an alternative to the commonly used chemical-mechanical polishing (CMP) procedure. We present transport measurements of JJs at 4.2 K that yield critical-current densities in the range from 50 to 10^4 A/cm^2. Our JJ process yields excellent quality parameters, Rsg/Rn up to ~50 and Vgap up to 2.81 mV, and also allows the fabrication of high-quality sub-mu m wide long JJs (LJJs) for the study of Josephson vortex behavior. The developed technique can also be used for similar multilayer processes and is very promising for fabricating sub-mu m JJs for quantum devices such as SQUIDs, qubits and SIS mixers.
We present a cluster algorithm for resistively shunted Josephson junctions and similar physical systems, which dramatically improves sampling efficiency. The algorithm combines local updates in Fourier space with rejection-free cluster updates which exploit the symmetries of the Josephson coupling energy. As an application, we consider the localization transition of a single junction at intermediate Josephson coupling and determine the temperature dependence of the zero bias resistance as a function of dissipation strength.
201 - O. Vavra , S. Gazi , I. Vavra 2004
Electrical properties of Josephson junctions Nb/FeSi/Nb with superconductor/ferromagnet (S/F)interfaces are presented. Due to Andreev reflection the nearly exact quadruple enhancement of the tunnel junction differential conductance compared with that of the normal state was achieved. The transparency of the S/F interfaces in our junctions was estimated to be close to unity. This almost ideal value is obtained due to the use of a very smooth amorphous magnetic FeSi alloy for the barrier preparation. The real structure of the Nb/FeSi/Nb tunnel junction is described as a S/F/I/F/S junction. Also Nb/FeSi/Si/Nb Josephson junctions were investigated and the results found on these junctions confirm the effects observed in Nb/FeSi/Nb.
The physics of the $pi$ phase shift in ferromagnetic Josephson junctions may enable a range of applications for spin-electronic devices and quantum computing. We investigate transitions from ``0 to ``$pi$ states in Nb/Fe/Nb Josephson junctions by var ying the Fe barrier thickness from 0.5 nm to 5.5 nm. From magnetic measurements we estimate for Fe a magnetic dead layer of about 1.1 nm. By fitting the characteristic voltage oscillations with existing theoretical models we extrapolate an exchange energy of 256 meV, a Fermi velocity of $1.98 times 10^5$ m/s and an electron mean free path of 6.2 nm, in agreement with other reported values. From the temperature dependence of the $I_CR_N$ product we show that its decay rate exhibits a nonmonotonic oscillatory behavior with the Fe barrier thickness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا