ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncertainties in constraining low-energy constants from $^3$H $beta$ decay

60   0   0.0 ( 0 )
 نشر من قبل Philipp Klos
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the uncertainties in constraining low-energy constants of chiral effective field theory from $^3$H $beta$ decay. The half-life is very precisely known, so that the Gamow-Teller matrix element has been used to fit the coupling $c_D$ of the axial-vector current to a short-range two-nucleon pair. Because the same coupling also describes the leading one-pion-exchange three-nucleon force, this in principle provides a very constraining fit, uncorrelated with the $^3$H binding energy fit used to constrain another low-energy coupling in three-nucleon forces. However, so far such $^3$H half-life fits have only been performed at a fixed cutoff value. We show that the cutoff dependence due to the regulators in the axial-vector two-body current can significantly affect the Gamow-Teller matrix elements and consequently also the extracted values for the $c_D$ coupling constant. The degree of the cutoff dependence is correlated with the softness of the employed NN interaction. As a result, present three-nucleon forces based on a fit to $^3$H $beta$ decay underestimate the uncertainty in $c_D$. We explore a range of $c_D$ values that is compatible within cutoff variation with the experimental $^3$H half-life and estimate the resulting uncertainties for many-body systems by performing calculations of symmetric nuclear matter.

قيم البحث

اقرأ أيضاً

It has been recently argued that inverse-beta nuclear transmutations might occur at an impressively high rate in a thin layer at the metallic hydride surface under specific conditions. In this note we present a calculation of the transmutation rate w hich shows that there is little room for such a remarkable effect.
$beta$ decay of the $^{61}$Cr$_{37}$ ground state has been studied. A new half-life of 233 +/- 11 ms has been deduced, and seven delayed $gamma$ rays have been assigned to the daughter, $^{61}$Mn$_{36}$. The low-energy level structure of $^{61}$Mn$_{ 36}$ is similar to that of the less neutron-rich $^{57,59}$Mn nuclei. The odd-A $_{25}$Mn isotopes follow the systematic trend in the yrast states of the even-even, Z + 1 $_{26}$Fe isotopes, and not that of the Z - 1 $_{24}$Cr isotopes, where a possible onset of collectivity has been suggested to occur already at N = 36.
The relativistic amplitudes of pion photoproduction are evaluated by dispersion relations at t=const. The imaginary parts of the amplitudes are taken from the MAID model covering the absorption spectrum up to center-of-mass energies W = 2.2 GeV. For sub-threshold kinematics the amplitudes are expanded in powers of the two independent variables u and t related to energy and momentum transfer. Subtracting the loop corrections from this power series allows one to determine the counter terms of covariant baryon chiral perturbation theory. The proposed continuation of the amplitudes into the unphysical region provides a unique framework to derive the low-energy constants to any given order as well as an estimate of the higher order terms by global properties of the absorption spectrum.
The radionuclide $^{22}$Na is a target of $gamma$-ray astronomy searches, predicted to be produced during thermonuclear runaways driving classical novae. The $^{22}$Na(p,$gamma$)$^{23}$Mg reaction is the main destruction channel of $^{22}$Na during a nova, hence, its rate is needed to accurately predict the $^{22}$Na yield. However, experimental determinations of the resonance strengths have led to inconsistent results. In this work, we report a measurement of the branching ratios of the $^{23}$Al $beta$-delayed protons, as a probe of the key 204--keV (center-of-mass) $^{22}$Na(p,$gamma$)$^{23}$Mg resonance strength. We report a factor of 5 lower branching ratio compared to the most recent literature value. The variation in $^{22}$Na yield due to nuclear data inconsistencies was assessed using a series of hydrodynamic nova outburst simulations and has increased to a factor of 3.8, corresponding to a factor of $sim$2 uncertainty in the maximum detectability distance. This is the first reported scientific measurement using the Gaseous Detector with Germanium Tagging (GADGET) system.
Observation of neutrinoless double beta decay, a lepton number violating process that has been proposed to clarify the nature of neutrino masses, has spawned an enormous world-wide experimental effort. Relating nuclear decay rates to high-energy, bey ond the Standard Model (BSM) physics requires detailed knowledge of non-perturbative QCD effects. Using lattice QCD, we compute the necessary matrix elements of short-range operators, which arise due to heavy BSM mediators, that contribute to this decay via the leading order $pi^- to pi^+$ exchange diagrams. Utilizing our result and taking advantage of effective field theory methods will allow for model-independent calculations of the relevant two-nucleon decay, which may then be used as input for nuclear many-body calculations of the relevant experimental decays. Contributions from short-range operators may prove to be equally important to, or even more important than, those from long-range Majorana neutrino exchange.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا