ﻻ يوجد ملخص باللغة العربية
Controlling the forbidden gap of graphene nano-ribbons (GNR) is a major challenge that has to be attained if this attractive material has to be used in micro- and nano-electronics. Using an unambiguous notation {m,n}-GNR, where m (n) is the number of six carbon rings in the arm-chair (zig-zag) directions, we investigate how varies the HOMO-LUMO gap when the size of the GNR is varied by increasing either m or n, while keeping the other variable fixed. It is shown that no matter whether charge- or spin-density-waves solutions are considered, the gap varies smoothly when n is kept fixed whereas it oscillates when the opposite is done, posing serious difficulties to the control of the gap. It is argued that the origin of this behavior is the fact that excess or defect charges or magnetic moments are mostly localized at zig-zag edges.
Zig-zag edge graphene ribbons grown on 6H-SiC facets are ballistic conductors. It has been assumed that zig-zag graphene ribbons grown on 4H-SiC would also be ballistic. However, in this work we show that SiC polytype matters; ballistic graphene ribb
In semiconducting armchair graphene ribbons a chiral lattice deformation can induce pairs of topological gap states with opposite energies. Near the critical value of the deformation potential these kink and antikink states become almost degenerate w
The zig-zag symmetry transition is a phase transition in 1D quantum wires, in which a Wigner lattice of electrons transitions to two staggered lattices. Previous studies model this transition as a Luttinger liquid coupled to a Majorana fermion. The m
When can $t$ terminal pairs in an $m times n$ grid be connected by $t$ vertex-disjoint paths that cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-hardness proofs: Lynch
Electronic states at the ends of a narrow armchair nanoribbon give rise to a pair of non-locally entangled spins. We propose two experiments to probe these magnetic states, based on magnetometry and tunneling spectroscopy, in which correlation effect