ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitons in van der Waals materials: from monolayer to bulk hexagonal boron nitride

102   0   0.0 ( 0 )
 نشر من قبل Jaakko Koskelo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general picture of the exciton properties of layered materials in terms of the excitations of their single-layer building blocks. To this end, we derive a model excitonic hamiltonian by drawing an analogy with molecular crystals, which are other prototypical van der Waals materials. We employ this simplified model to analyse in detail the excitation spectrum of hexagonal boron nitride (hBN) that we have obtained from the {it ab initio} solution of the many-body Bethe-Salpeter equation as a function of momentum. In this way we identify the character of the lowest-energy excitons in hBN, discuss the effects of the interlayer hopping and the electron-hole exchange interaction on the exciton dispersion, and illustrate the relation between exciton and plasmon excitations in layered materials.

قيم البحث

اقرأ أيضاً

Two-dimensional materials offer a versatile platform to study high-harmonic generation (HHG), encompassing as limiting cases bulk-like and atomic-like harmonic generation [Tancogne-Dejean and Rubio, Science Advance textbf{4}, eaao5207 (2018)]. Unders tanding the high-harmonic response of few-layer semiconducting systems is important, and might open up possible technological applications. Using extensive first-principle calculations within a time-dependent density functional theory framework, we show how the in-plane and out-of-plane nonlinear non-perturbative response of two-dimensional materials evolve from the monolayer to the bulk. We illustrate this phenomenon for the case of multilayer hexagonal BN layered systems. Whereas the in-plane HHG is found not to be strongly altered by the stacking of the layers, we found that the out-of-plane response is strongly affected by the number of layers considered. This is explained by the interplay between the induced electric field by electron-electron interactions and the interlayer delocalization of the wave-functions contributing most to the HHG signal. The gliding of a bilayer is also found to affect the high-harmonic emission. Our results will have important ramifications for the experimental study of monolayer and few-layer two-dimensional materials beyond the case of hexagonal BN studied here as the result we found arew generic and applicable to all 2D semiconducting multilayer systems.
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are the subject of intense investigation for applications in optics, electronics, catalysis, and energy storage. Their optical and electronic properties can be significantly enhanced when encapsulated in an environment that is free of charge disorder. Because hexagonal boron nitride (h-BN) is atomically thin, highly-crystalline, and is a strong insulator, it is one of the most commonly used 2D materials to encapsulate and passivate TMDCs. In this report, we examine how ultrathin h-BN shields an underlying MoS2 TMDC layer from the energetic argon plasmas that are routinely used during semiconductor device fabrication and post-processing. Aberration-corrected Scanning Transmission Electron Microscopy is used to analyze defect formation in both the h-BN and MoS2 layers, and these observations are correlated with Raman and photoluminescence spectroscopy. Our results highlight that h-BN is an effective barrier for short plasma exposures (< 30 secs) but is ineffective for longer exposures, which result in extensive knock-on damage and amorphization in the underlying MoS2.
We report the first observation of substitutional silicon atoms in single-layer hexagonal boron nitride (h-BN) using aberration corrected scanning transmission electron microscopy (STEM). The medium angle annular dark field (MAADF) images reveal sili con atoms exclusively filling boron vacancies. This structure is stable enough under electron beam for repeated imaging. Density functional theory (DFT) is used to study the energetics, structure and properties of the experimentally observed structure. The formation energies of all possible charge states of the different silicon substitutions (Si$_mathrm{B}$, Si$_mathrm{N}$ and Si$_mathrm{{BN}}$) are calculated. The results reveal Si$_mathrm{B}^{+1}$ as the most stable substitutional configuration. In this case, silicon atom elevates by 0.66{AA} out of the lattice with unoccupied defect levels in the electronic band gap above the Fermi level. The formation energy shows a slightly exothermic process. Our results unequivocally show that heteroatoms can be incorporated into the h-BN lattice opening way for applications ranging from single-atom catalysis to atomically precise magnetic structures.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t he family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
96 - Sebastien Roux 2021
Using a new time-resolved cathodoluminescence system dedicated to the UV spectral range, we present a first estimate of the radiative lifetime of free excitons in hBN at room temperature. This is carried out from a single experiment giving both the a bsolute luminescence intensity under continuous excitation and the decay time of free excitons in the time domain. The radiative lifetime of indirect excitons in hBN is equal to 27 ns, which is much shorter than in other indirect bandgap semiconductors. This is explained by the close proximity of the electron and the hole in the exciton complex, and also by the small energy difference between indirect and direct excitons. The unusually high luminescence efficiency of hBN for an indirect bandgap is therefore semi-quantitatively understood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا