ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband X-ray spectral analysis of the Seyfert 1 galaxy GRS 1734-292

61   0   0.0 ( 0 )
 نشر من قبل Alessia Tortosa
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the broadband X-ray spectrum of GRS 1734-292 obtained from non-simultaneous XMM-Newton and NuSTAR observations, performed in 2009 and 2014, respectively. GRS1734-292 is a Seyfert 1 galaxy, located near the Galactic plane at $z=0.0214$. The NuSTAR spectrum ($3-80$ keV) is dominated by a primary power-law continuum with $Gamma=1.65 pm 0.05$ and a high-energy cutoff $E_c=53^{+11}_{-8}$ keV, one of the lowest measured by NuSTAR in a Seyfert galaxy. Comptonization models show a temperature of the coronal plasma of $kT_e=11.9^{+1.2}_{-0.9}$ keV and an optical depth, assuming a slab geometry, $tau=2.98^{+0.16}_{-0.19}$ or a similar temperature and $tau=6.7^{+0.3}_{-0.4}$ assuming a spherical geometry. The 2009 XMM-Newton spectrum is well described by a flatter intrinsic continuum ($Gamma=1.47^{+0.07}_{-0.03}$) and one absorption line due to Fetextsc{XXV} K$alpha$ produced by a warm absorber. Both data sets show a modest iron K$alpha$ emission line at $6.4$ keV and the associated Compton reflection, due to reprocessing from neutral circumnuclear material.

قيم البحث

اقرأ أيضاً

We have extensively studied the broadband X-ray spectra of the source ESO~141--G055 using all available xmm{} and ustar{} observations. We detect a prominent soft excess below 2 keV, a narrow Fe line and a Compton hump (>10 keV). The origin of the s oft excess is still debated. We used two models to describe the soft excess: the blurred reflection from the ionized accretion disk and the intrinsic thermal Comptonisation model. We find that both of these models explain the soft excess equally well. We confirm that we do not detect any broad Fe line in the X-ray spectra of this source, although both the physical models prefer a maximally spinning black hole scenario (a$>$0.96). This may mean that either the broad Fe line is absent or blurred beyond detection. The Eddington rate of the source is estimated to be $lambda_{Edd} sim 0.31$. In the reflection model, the Compton hump has a contribution from both ionized and neutral reflection components. The neutral reflector which simultaneously describes the narrow Fe K$alpha$ and the Compton hump has a column density of $rm N_{H} geq 7times 10^{24} rm cm^{-2} $. In addition, we detect a partially covering ionized absorption with ionization parameter $log xi/rm erg cm s^{-1}$ = $0.1^{+0.1}_{-0.1}$ and column density $rm N_{H} =20.6^{+1.0}_{-1.0}times 10^{22} rm cm^{-2}$ with a covering factor of $0.21^{+0.01}_{-0.01}$.
We report on the X-ray spectral behavior within the steady states of GRS 1915+105. Our work is based on the full data set on the source obtained using the Proportional Counter Array on the Rossi X-ray Timing Explorer and 15 GHz radio data obtained us ing the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to them as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the coronal component in both the soft and hard data within the {it RXTE}/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius (R_in), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes eta~0.68 +/- 0.35 and eta ~ 1.12 +/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of model parameters to the state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while a large portion of the steady-hard observations match the hard state criteria when the disk fraction constraint is neglected.
We present joint textit{XMM-Newton} and textit{NuSTAR} observations of the `bare narrow line Seyfert 1 Ton S180 ($z=0.062$), carried out in 2016 and providing the first hard X-ray view of this luminous galaxy. We find that the 0.4--30 keV band cannot be self-consistently reproduced by relativistic reflection models, which fail to account simultaneously for the soft and hard X-ray emission. The smooth soft excess prefers extreme blurring parameters, confirmed by the nearly featureless nature of the RGS spectrum, while the moderately broad Fe K line and the modest hard excess above 10 keV appear to arise in a milder gravity regime. By allowing a different origin of the soft excess, the broadband X-ray spectrum and overall spectral energy distribution (SED) are well explained by a combination of: (a) direct thermal emission from the accretion disc, dominating from the optical to the far/extreme UV; (b) Comptonization of seed disc photons by a warm ($kT_{rm e}sim0.3$ keV) and optically thick ($tausim10$) corona, mostly contributing to the soft X-rays; (c) Comptonization by a standard hot ($kT_{rm e} gtrsim 100$ keV) and optically thin ($tau<0.5$) corona, responsible for the primary X-ray continuum; and (d) reflection from the mid/outer part of the disc. The two coronae are suggested to be rather compact, with $R_{rm hot} lesssim R_{rm warm} lesssim 10$ R$_{rm g}$. Our SED analysis implies that Ton S180 accretes at super-Eddington rates. This is a key condition for the launch of a wind, marginal (i.e., 3.1$sigma$ significance) evidence of which is indeed found in the RGS spectrum.
We present a flux-resolved X-ray analysis of the dwarf Seyfert 1.8 galaxy NGC 4395, based on three archival $XMM-Newton$ and one archival $NuSTAR$ observations. The source is known to harbor a low mass black hole ($sim 10^4- {rm a~ few~}times 10^{5}~ rm M_odot$) and shows strong variability in the full X-ray range during these observations. We model the flux-resolved spectra of the source assuming three absorbing layers: neutral, mildly ionized, and highly ionized ($N_{rm H} sim 1.6times 10^{22}-3.4 times 10^{23}~rm cm^{-2}$, $sim 0.8-7.8 times 10^{22}~rm cm^{-2}$, and $ 3.8 times 10^{22}~rm cm^{-2}$, respectively. The source also shows intrinsic variability by a factor of $sim 3$, on short timescales, due to changes in the nuclear flux, assumed to be a power law ($Gamma = 1.6-1.67$). Our results show a positive correlation between the intrinsic flux and the absorbers ionization parameter. The covering fraction of the neutral absorber varies during the first $XMM-Newton$ observation, which could explain the pronounced soft X-ray variability. However, the source remains fully covered by this layer during the other two observations, largely suppressing the soft X-ray variability. This suggests an inhomogeneous and layered structure in the broad line region. We also find a difference in the characteristic timescale of the power spectra between different energy ranges and observations. We finally show simulated spectra with $XRISM$, $Athena$, and $eXTP$, which will allow us to characterize the different absorbers, study their dynamics, and will help us identify their locations and sizes.
We present results from four new broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 ($L_{rm{X}} > 10^{40}$ erg/s), performed by $Suzaku$ and $NuSTAR$ in coordination. Combined with the archival data, we now have br oadband observations of this remarkable source from six separate epochs. Two of these new observations probe lower fluxes than seen previously, allowing us to extend our knowledge of the broadband spectral variability exhibited. The spectra are well fit by two thermal blackbody components, which dominate the emission below 10 keV, as well as a steep ($Gamma sim 3.5$) powerlaw tail which dominates above $sim$15 keV. Remarkably, while the 0.3-10.0 keV flux varies by a factor of $sim$3 between all these epochs, the 15-40 keV flux varies by only $sim$20%. Although the spectral variability is strongest in the $sim$1-10 keV band, both of the thermal components are required to vary when all epochs are considered. We also re-visit the search for iron absorption features, leveraging the high-energy $NuSTAR$ data to improve our sensitivity to extreme velocity outflows in light of the ultra-fast outflow recently detected in NGC 1313 X-1. Iron absorption from a similar outflow along our line of sight can be ruled out in this case. We discuss these results in the context of super-Eddington accretion models that invoke a funnel-like geometry for the inner flow, and propose a scenario in which we have an almost face-on view of a funnel that expands to larger radii with increasing flux, resulting in an increasing degree of geometrical collimation for the emission from intermediate temperature regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا