ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector

69   0   0.0 ( 0 )
 نشر من قبل Jannik Hofest\\\"adt
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studying atmospheric neutrino oscillations in the few-GeV range with a multimegaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1 - 20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice.

قيم البحث

اقرأ أيضاً

104 - Ulrich F. Katz 2014
It has recently been suggested that the neutrino mass hierarchy can be experimentally determined from the oscillation pattern of atmospheric neutrinos passing through the Earth by measuring the two-dimensional arrival pattern of neutrinos in energy a nd zenith angle, in the energy regime of about 3-20 GeV. ORCA (Oscillation Research with Cosmics in the Abyss) is a study addressing the feasibility of such a measurement employing the deep-sea neutrino telescope technology developed for the KM3NeT project. In the following, the underlying physics and resulting experimental signatures will be discussed and some aspects of the ongoing simulation studies presented. A preliminary sensitivity estimate derived from a simplified study strongly indicates that an exposure of at least 20 Mton-years will be required to arrive at conclusive results.
83 - U. Mosel , K. Gallmeister 2017
[Background] Long-Baseline experiments such as T2K, NOvA or the planned Deep Underground Neutrino Experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. [Purpose] One of the dominant reaction channels in neutrino-nucleus interactions is pion production. This paper aims for a coherent view on all charged current charged pion production data that are avaible from the experiments MiniBooNE, the near detector experiment at T2K and MINERvA. [Methods] Pion production is treated through excitations of nucleon resonances, including background terms, and deep inelastic scattering. The final state interactions of the produced pions are described within the Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory. [Results] Results are given for MiniBooNE, the near detector experiment at T2K and for MINERvA. While the theoretical results for MiniBooNE differ from the data both in shape and magnitude, their agreement both with the T2K and the MINERvA data is good for all pion and lepton observables. Predictions for pion spectra are shown for MicroBooNE and NOvA. [Conclusions] Based on the GiBUU model of lepton-nucleus interactions a consistent, good theoretical description of CC charged pion production data from the T2K ND and the MINERvA experiments is possible, without any parameter tunes. The MiniBooNE data cannot be reproduced.
Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile n eutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters $sin^2theta_{23}$ and $Delta m_{31}^2$, as well as the sensitivity to the neutrino mass ordering.
81 - Artur M. Ankowski 2015
One of the largest sources of systematic uncertainties in ongoing neutrino-oscillation measurements is the description of nuclear effects. Its considerable reduction is expected thanks to the dedicated studies of (anti)neutrino-nucleus interactions i n the MINERvA experiment. In this article, the calculations within the spectral function approach are compared to the charged-current quasielastic cross sections reported from MINERvA. The obtained results show that the effect of final-state interactions on the (anti)muon kinematics plays pivotal role in reproducing the experimental data.
We describe algorithms developed to isolate and accurately reconstruct two-track events that are contained within the MicroBooNE detector. This method is optimized to reconstruct two tracks of lengths longer than 5 cm. This code has applications to s earches for neutrino oscillations and measurements of cross sections using quasi-elastic-like charged current events. The algorithms we discuss will be applicable to all detectors running in Fermilabs Short Baseline Neutrino program (SBN), and to any future liquid argon time projection chamber (LArTPC) experiment with beam energies ~1 GeV. The algorithms are publicly available on a GITHUB repository. This reconstruction offers a complementary and independent alternative to the Pandora reconstruction package currently in use in LArTPC experiments, and provides similar reconstruction performance for two-track events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا