ﻻ يوجد ملخص باللغة العربية
[Background] Long-Baseline experiments such as T2K, NOvA or the planned Deep Underground Neutrino Experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. [Purpose] One of the dominant reaction channels in neutrino-nucleus interactions is pion production. This paper aims for a coherent view on all charged current charged pion production data that are avaible from the experiments MiniBooNE, the near detector experiment at T2K and MINERvA. [Methods] Pion production is treated through excitations of nucleon resonances, including background terms, and deep inelastic scattering. The final state interactions of the produced pions are described within the Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory. [Results] Results are given for MiniBooNE, the near detector experiment at T2K and for MINERvA. While the theoretical results for MiniBooNE differ from the data both in shape and magnitude, their agreement both with the T2K and the MINERvA data is good for all pion and lepton observables. Predictions for pion spectra are shown for MicroBooNE and NOvA. [Conclusions] Based on the GiBUU model of lepton-nucleus interactions a consistent, good theoretical description of CC charged pion production data from the T2K ND and the MINERvA experiments is possible, without any parameter tunes. The MiniBooNE data cannot be reproduced.
This short paper is an addendum to a recent publication on charged current neutrino-induced pion production (Phys. Rev. C96 (2017) no.1, 015503). It presents comparisons of pion production cross sections measured at the T2K near detector for a CH target.
It is pointed out that so far all theoretical estimates of coherent pion production off nuclei induced by neutrinos rely on the local approximation well known in photonuclear physics. The effects of dropping this approximation are discussed. It is fo
Neutrino-induced pion production on nuclear targets is the major inelastic channel in all present-day neutrino-oscillation experiments. It has to be understood quantitatively in order to be able to reconstruct the neutrino-energy at experiments such
We investigate charged and neutral current neutrino induced incoherent pion production off nuclei at MiniBooNE and K2K energies within the GiBUU model. We assume impulse approximation and treat the nucleus as a local Fermi gas of nucleons bound in a
Background: Long-baseline experiments such as the planned Deep Underground Neutrino Experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understan