ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity-enhanced single photon source based on the silicon vacancy center in diamond

92   0   0.0 ( 0 )
 نشر من قبل Julia Benedikter
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single photon sources are an integral part of various quantum technologies, and solid state quantum emitters at room temperature appear as a promising implementation. We couple the fluorescence of individual silicon vacancy centers in nanodiamonds to a tunable optical microcavity to demonstrate a single photon source with high efficiency, increased emission rate, and improved spectral purity compared to the intrinsic emitter properties. We use a fiber-based microcavity with a mode volume as small as $3.4~lambda^3$ and a quality factor of $1.9times 10^4$ and observe an effective Purcell factor of up to 9.2. We furthermore study modifications of the internal rate dynamics and propose a rate model that closely agrees with the measurements. We observe lifetime changes of up to 31%, limited by the finite quantum efficiency of the emitters studied here. With improved materials, our achieved parameters predict single photon rates beyond 1 GHz.

قيم البحث

اقرأ أيضاً

The nitrogen-vacancy center in diamond has been explored extensively as a light-matter interface for quantum information applications, however it is limited by low coherent photon emission and spectral instability. Here, we present a promising interf ace based on an alternate defect with superior optical properties (the germanium-vacancy) coupled to a finesse $approx11{,}000$ fiber cavity, resulting in a $31^{+11}_{-15}$-fold increase in the spectral density of emission. This work sets the stage for cryogenic experiments, where we predict a measurable increase in the spontaneous emission rate.
Deterministic coupling of single solid-state emitters to nanocavities is the key for integrated quantum information devices. We here fabricate a photonic crystal cavity around a preselected single silicon-vacancy color center in diamond and demonstra te modification of the emitters internal population dynamics and radiative quantum efficiency. The controlled, room-temperature cavity coupling gives rise to a resonant Purcell enhancement of the zero-phonon transition by a factor of 19, coming along with a 2.5-fold reduction of the emitters lifetime.
Quantum emitters are an integral component for a broad range of quantum technologies including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum o ptics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single photon generation and photon mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime where the excited state lifetime is dominated by spontaneous emission into the cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited state energy decay occurring through spontaneous emission into the cavity mode. We also demonstrate the largest to date coupling strength ($g/2pi=4.9pm0.3 GHz$) and cooperativity ($C=1.4$) for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.
High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission int o propagating surface plasmon polariton (SPP) modes narrowing NV centers broad emission bandwidth with enhanced coupling efficiency. The cavity resonator consists of two distributed Bragg mirrors that are built at opposite sides of the coupled NV emitter and are integrated with a dielectric-loaded SPP waveguide (DLSPPW), using electron-beam lithography of hydrogen silsesquioxane resist deposited on silver-coated silicon substrates. A quality factor of ~ 70 for the cavity (full width at half maximum ~ 10 nm) with full tunability of the resonance wavelength is demonstrated. An up to 42-fold decay rate enhancement of the spontaneous emission at the cavity resonance is achieved, indicating high DLSPPW mode confinement.
We control the electronic structure of the silicon-vacancy (SiV) color-center in diamond by changing its static strain environment with a nano-electro-mechanical system. This allows deterministic and local tuning of SiV optical and spin transition fr equencies over a wide range, an essential step towards multi-qubit networks. In the process, we infer the strain Hamiltonian of the SiV revealing large strain susceptibilities of order 1 PHz/strain for the electronic orbital states. We identify regimes where the spin-orbit interaction results in a large strain suseptibility of order 100 THz/strain for spin transitions, and propose an experiment where the SiV spin is strongly coupled to a nanomechanical resonator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا