ﻻ يوجد ملخص باللغة العربية
A scanning tunneling microscope is used to generate the electroluminescence of phthalocyanine molecules deposited on NaCl/Ag(111). Photon spectra reveal an intense emission line at 1.9 eV that corresponds to the fluorescence of the molecules, and a series of weaker red-shifted lines. Based on a comparison with Raman spectra acquired on macroscopic molecular crystals, these spectroscopic features can be associated to the vibrational modes of the molecules and provide a detailed chemical fingerprint of the probed species. Maps of the vibronic features reveal sub- molecularly-resolved structures whose patterns are related to the symmetry of the probed vibrational modes.
Phase-locked ultrashort pulses in the rich terahertz (THz) spectral range have provided key insights into phenomena as diverse as quantum confinement, first-order phase transitions, high-temperature superconductivity, and carrier transport in nanomat
Compact and electrically controllable on-chip sources of indistinguishable photons are desirable for the development of integrated quantum technologies. We demonstrate that two quantum dot light emitting diodes (LEDs) in close proximity on a single c
We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics
We suggest and demonstrate via large scale numerical simulations an electrically operated spin- wave inducer based on composite multiferroic junctions. Specifcally, we consider an interfacially coupled ferromagnetic/ferroelectric structure that emits
We demonstrate that the spin of optically addressable point defects can be coherently driven with AC electric fields. Based on magnetic-dipole forbidden spin transitions, this scheme enables spatially confined spin control, the imaging of high-freque