ﻻ يوجد ملخص باللغة العربية
We analyse the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability---a collective many-body bounce effect. The effect, while being invisible in the evolution of the in-situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas, wherein the many-body bounce is explained by an increased thermodynamic pressure of the gas during the isentropic compression, which acts as a potential barrier at the inner turning points of the breathing cycle.
We study the out-of-equilibrium dynamics of a finite-temperature harmonically trapped Tonks-Girardeau gas induced by periodic modulation of the trap frequency. We give explicit exact solutions for the real-space density and momentum distributions of
A harmonically trapped ultracold 1D spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a 3D Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is cons
We study the local correlations in the super Tonks-Girardeau gas, a highly excited, strongly correlated state obtained in quasi one-dimensional Bose gases by tuning the scattering length to large negative values using a confinement-induced resonance.
The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a general method to calculate the exact spectral function of a strongly interacting one-dim
Describing finite-temperature nonequilibrium dynamics of interacting many-particle systems is a notoriously challenging problem in quantum many-body physics. Here we provide an exact solution to this problem for a system of strongly interacting boson