ﻻ يوجد ملخص باللغة العربية
Describing finite-temperature nonequilibrium dynamics of interacting many-particle systems is a notoriously challenging problem in quantum many-body physics. Here we provide an exact solution to this problem for a system of strongly interacting bosons in one dimension in the Tonks-Girardeau regime of infinitely strong repulsive interactions. Using the Fredholm determinant approach and the Bose-Fermi mapping we show how the problem can be reduced to a single-particle basis, wherein the finite-temperature effects enter the solution via an effective dressing of the single-particle wavefunctions by the Fermi-Dirac occupation factors. We demonstrate the utility of our approach and its computational efficiency in two nontrivial out-of-equilibrium scenarios: collective breathing mode oscillations in a harmonic trap and collisional dynamics in the Newtons cradle setting involving real-time evolution in a periodic Bragg potential.
We study the out-of-equilibrium dynamics of a finite-temperature harmonically trapped Tonks-Girardeau gas induced by periodic modulation of the trap frequency. We give explicit exact solutions for the real-space density and momentum distributions of
We develop a general approach for calculating the characteristic function of the work distribution of quantum many-body systems in a time-varying potential, whose many-body wave function can be cast in the Slater determinant form. Our results are app
The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a general method to calculate the exact spectral function of a strongly interacting one-dim
A harmonically trapped ultracold 1D spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a 3D Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is cons
We explore the ground state properties of cold atomic gases, loaded into a bichromatic lattice, focusing on the cases of non-interacting fermions and hard-core (Tonks-Girardeau) bosons, trapped by the combination of two potentials with incommensurate