ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisionless, phase-mixed, dispersive, Gaussian Alfven pulse in transversely inhomogeneous plasma

136   0   0.0 ( 0 )
 نشر من قبل David Tsiklauri
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Tsiklauri




اسأل ChatGPT حول البحث

In the previous works harmonic, phase-mixed, Alfven wave dynamics was considered both in the kinetic and magnetohydrodynamic regimes. Up today only magnetohydrodynamic, phase-mixed, Gaussian Alfven pulses were investigated. In the present work we extend this into kinetic regime. Here phase-mixed, Gaussian Alfven pulses are studied, which are more appropriate for solar flares, than harmonic waves, as the flares are impulsive in nature. Collisionless, phase-mixed, dispersive, Gaussian Alfven pulse in transversely inhomogeneous plasma is investigated by particle-in-cell (PIC) simulations and by an analytical model. The pulse is in inertial regime with plasma beta less than electron-to-ion mass ratio and has a spatial width of 12 ion inertial length. The linear analytical model predicts that the pulse amplitude decrease is described by the linear Korteweg de Vries (KdV) equation. The numerical and analytical solution of the linear KdV equation produces the pulse amplitude decrease in time as $t^{-1}$. The latter scaling law is corroborated by full PIC simulations. It is shown that the pulse amplitude decrease is due to dispersive effects, while electron acceleration is due to Landau damping of the phase-mixed waves. The established amplitude decrease in time as $t^{-1}$ is different from the MHD scaling of $t^{-3/2}$. This can be attributed to the dispersive effects resulting in the different scaling compared to MHD, where the resistive effects cause the damping, in turn, enhanced by the inhomogeneity. Reducing background plasma temperature and increase in ion mass yields more efficient particle acceleration.

قيم البحث

اقرأ أيضاً

87 - D. Tsiklauri 2011
Dispersive Alfven waves (DAWs) offer, an alternative to magnetic reconnection, opportunity to accelerate solar flare particles. We study the effect of DAW polarisation, L-, R-, circular and elliptical, in different regimes inertial and kinetic on the efficiency of particle acceleration. We use 2.5D PIC simulations to study how particles are accelerated when DAW, triggered by a solar flare, propagates in transversely inhomogeneous plasma that mimics solar coronal loop. (i) In inertial regime, fraction of accelerated electrons (along the magnetic field), in density gradient regions is ~20% by the time when DAW develops 3 wavelengths and is increasing to ~30% by the time DAW develops 13 wavelengths. In all considered cases ions are heated in transverse to the magnetic field direction and fraction of the heated particles is ~35%. (ii) The case of R-circular, L- and R- elliptical polarisation DAWs, with the electric field in the non-ignorable transverse direction exceeding several times that of in the ignorable direction, produce more pronounced parallel electron beams and transverse ion beams in the ignorable direction. In the inertial regime such polarisations yield the fraction of accelerated electrons ~20%. In the kinetic regime this increases to ~35%. (iii) The parallel electric field that is generated in the density inhomogeneity regions is independent of m_i/m_e and exceeds the Dreicer value by 8 orders of magnitude. (iv) Electron beam velocity has the phase velocity of the DAW. Thus electron acceleration is via Landau damping of DAWs. For the Alfven speeds of 0.3c the considered mechanism can accelerate electrons to energies circa 20 keV. (v) The increase of mass ratio from m_i/m_e=16 to 73.44 increases the fraction of accelerated electrons from 20% to 30-35% (depending on DAW polarisation). For the mass ratio m_i/m_e=1836 the fraction of accelerated electrons would be >35%.
128 - D. Tsiklauri 2012
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency $0.3 omega_{ci}$ are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully-kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the knee often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.
Using analytical theory and hybrid-kinetic numerical simulations, we demonstrate that, in a collisionless plasma, long-wavelength ion-acoustic waves (IAWs) with amplitudes $delta n/n_0 gtrsim 2/beta$ (where $betagg{1}$ is the ratio of thermal to magn etic pressure) generate sufficient pressure anisotropy to destabilize the plasma to firehose and mirror instabilities. These kinetic instabilities grow rapidly to reduce the pressure anisotropy by pitch-angle scattering and trapping particles, respectively, thereby impeding the maintenance of Landau resonances that enable such waves otherwise potent collisionless damping. The result is wave dynamics that evince a weakly collisional plasma: the ion distribution function is near-Maxwellian, the field-parallel flow of heat resembles its Braginskii form (except in regions where large-amplitude magnetic mirrors strongly suppress particle transport), and the relations between various thermodynamic quantities are more `fluid-like than kinetic. A nonlinear fluctuation-dissipation relation for self-sustaining IAWs is obtained by solving a plasma-kinetic Langevin problem, which demonstrates suppressed damping, enhanced fluctuation levels, and weakly collisional thermodynamics when IAWs with $delta n/n_0 gtrsim 2/beta$ are stochastically driven. We investigate how our results depend upon the scale separation between the wavelength of the IAW and the Larmor radius of the ions, and discuss briefly their implications for our understanding of turbulence and transport in the solar wind and the intracluster medium of galaxy clusters.
Hybrid-kinetic numerical simulations of firehose and mirror instabilities in a collisionless plasma are performed in which pressure anisotropy is driven as the magnetic field is changed by a persistent linear shear $S$. For a decreasing field, it is found that mostly oblique firehose fluctuations grow at ion Larmor scales and saturate with energies $sim$$S^{1/2}$; the pressure anisotropy is pinned at the stability threshold by particle scattering off microscale fluctuations. In contrast, nonlinear mirror fluctuations are large compared to the ion Larmor scale and grow secularly in time; marginality is maintained by an increasing population of resonant particles trapped in magnetic mirrors. After one shear time, saturated order-unity magnetic mirrors are formed and particles scatter off their sharp edges. Both instabilities drive sub-ion-Larmor--scale fluctuations, which appear to be kinetic-Alfv{e}n-wave turbulence. Our results impact theories of momentum and heat transport in astrophysical and space plasmas, in which the stretching of a magnetic field by shear is a generic process.
A possible solution to the unexplained high intensity hard x-ray (HXR) emission observable during solar flares was investigated via 3D fully relativistic, electromagnetic particle-in-cell (PIC) simulations with realistic ion to electron mass ratio. A beam of accelerated electrons was injected into a magnetised, Maxwellian, homogeneous and inhomogeneous background plasma. The electron distribution function was unstable to the beam-plasma instability and was shown to generate Langmuir waves, while relaxing to plateau formation. In order to estimate the role of the background density gradient on an unbound (infinite spatial extent) beam, three different scenarios were investigated: a) a uniform density background; b) a weak density gradient, n_R/n_L=3; c) a strong gradient case, n_R/n_L=10, where n_R and n_L denote background electron densities on the left and right edges of the simulation box respectively. The strong gradient case produced the largest fraction of electrons beyond 15 v_th. Further, two cases (uniform and strong gradient background) with spatially localized beam injections were performed aiming to show drifts of the generated Langmuir wave wavenumbers, as suggested in previous studies. For the strong gradient case, the Langmuir wave power is shown to drift to smaller wavenumbers, as found in previous quasi-linear simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا