ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory and Tools for the Conversion of Analog to Spiking Convolutional Neural Networks

129   0   0.0 ( 0 )
 نشر من قبل Bodo Rueckauer
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep convolutional neural networks (CNNs) have shown great potential for numerous real-world machine learning applications, but performing inference in large CNNs in real-time remains a challenge. We have previously demonstrated that traditional CNNs can be converted into deep spiking neural networks (SNNs), which exhibit similar accuracy while reducing both latency and computational load as a consequence of their data-driven, event-based style of computing. Here we provide a novel theory that explains why this conversion is successful, and derive from it several new tools to convert a larger and more powerful class of deep networks into SNNs. We identify the main sources of approximation errors in previous conversion methods, and propose simple mechanisms to fix these issues. Furthermore, we develop spiking implementations of common CNN operations such as max-pooling, softmax, and batch-normalization, which allow almost loss-less conversion of arbitrary CNN architectures into the spiking domain. Empirical evaluation of different network architectures on the MNIST and CIFAR10 benchmarks leads to the best SNN results reported to date.



قيم البحث

اقرأ أيضاً

The paper proposes a method to convert a deep learning object detector into an equivalent spiking neural network. The aim is to provide a conversion framework that is not constrained to shallow network structures and classification problems as in sta te-of-the-art conversion libraries. The results show that models of higher complexity, such as the RetinaNet object detector, can be converted with limited loss in performance.
Spiking neural networks (SNNs) offer an inherent ability to process spatial-temporal data, or in other words, realworld sensory data, but suffer from the difficulty of training high accuracy models. A major thread of research on SNNs is on converting a pre-trained convolutional neural network (CNN) to an SNN of the same structure. State-of-the-art conversion methods are approaching the accuracy limit, i.e., the near-zero accuracy loss of SNN against the original CNN. However, we note that this is made possible only when significantly more energy is consumed to process an input. In this paper, we argue that this trend of energy for accuracy is not necessary -- a little energy can go a long way to achieve the near-zero accuracy loss. Specifically, we propose a novel CNN-to-SNN conversion method that is able to use a reasonably short spike train (e.g., 256 timesteps for CIFAR10 images) to achieve the near-zero accuracy loss. The new conversion method, named as explicit current control (ECC), contains three techniques (current normalisation, thresholding for residual elimination, and consistency maintenance for batch-normalisation), in order to explicitly control the currents flowing through the SNN when processing inputs. We implement ECC into a tool nicknamed SpKeras, which can conveniently import Keras CNN models and convert them into SNNs. We conduct an extensive set of experiments with the tool -- working with VGG16 and various datasets such as CIFAR10 and CIFAR100 -- and compare with state-of-the-art conversion methods. Results show that ECC is a promising method that can optimise over energy consumption and accuracy loss simultaneously.
In this paper, we propose a novel adaptive kernel for the radial basis function (RBF) neural networks. The proposed kernel adaptively fuses the Euclidean and cosine distance measures to exploit the reciprocating properties of the two. The proposed fr amework dynamically adapts the weights of the participating kernels using the gradient descent method thereby alleviating the need for predetermined weights. The proposed method is shown to outperform the manual fusion of the kernels on three major problems of estimation namely nonlinear system identification, pattern classification and function approximation.
Computation using brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency compared to the current analog neural networks (ANNs). Unfortunately, training SNNs with the same number of layers as state of the art ANNs remains a challenge. To our knowledge the only method which is successful in this regard is supervised training of ANN and then converting it to SNN. In this work we directly train deep SNNs using backpropagation with surrogate gradient and find that due to implicitly recurrent nature of feed forward SNNs the exploding or vanishing gradient problem severely hinders their training. We show that this problem can be solved by tuning the surrogate gradient function. We also propose using batch normalization from ANN literature on input currents of SNN neurons. Using these improvements we show that is is possible to train SNN with ResNet50 architecture on CIFAR100 and Imagenette object recognition datasets. The trained SNN falls behind in accuracy compared to analogous ANN but requires several orders of magnitude less inference time steps (as low as 10) to reach good accuracy compared to SNNs obtained by conversion from ANN which require on the order of 1000 time steps.
The spiking neural network (SNN) computes and communicates information through discrete binary events. It is considered more biologically plausible and more energy-efficient than artificial neural networks (ANN) in emerging neuromorphic hardware. How ever, due to the discontinuous and non-differentiable characteristics, training SNN is a relatively challenging task. Recent work has achieved essential progress on an excellent performance by converting ANN to SNN. Due to the difference in information processing, the converted deep SNN usually suffers serious performance loss and large time delay. In this paper, we analyze the reasons for the performance loss and propose a novel bistable spiking neural network (BSNN) that addresses the problem of spikes of inactivated neurons (SIN) caused by the phase lead and phase lag. Also, when ResNet structure-based ANNs are converted, the information of output neurons is incomplete due to the rapid transmission of the shortcut path. We design synchronous neurons (SN) to help efficiently improve performance. Experimental results show that the proposed method only needs 1/4-1/10 of the time steps compared to previous work to achieve nearly lossless conversion. We demonstrate state-of-the-art ANN-SNN conversion for VGG16, ResNet20, and ResNet34 on challenging datasets including CIFAR-10 (95.16% top-1), CIFAR-100 (78.12% top-1), and ImageNet (72.64% top-1).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا