ﻻ يوجد ملخص باللغة العربية
The development of global sensitivity analysis of numerical model outputs has recently raised new issues on 1-dimensional Poincare inequalities. Typically two kind of sensitivity indices are linked by a Poincare type inequality, which provide upper bounds of the most interpretable index by using the other one, cheaper to compute. This allows performing a low-cost screening of unessential variables. The efficiency of this screening then highly depends on the accuracy of the upper bounds in Poincare inequalities. The novelty in the questions concern the wide range of probability distributions involved, which are often truncated on intervals. After providing an overview of the existing knowledge and techniques, we add some theory about Poincare constants on intervals, with improvements for symmetric intervals. Then we exploit the spectral interpretation for computing exact value of Poincare constants of any admissible distribution on a given interval. We give semi-analytical results for some frequent distributions (truncated exponential, triangular, truncated normal), and present a numerical method in the general case. Finally, an application is made to a hydrological problem, showing the benefits of the new results in Poincare inequalities to sensitivity analysis.
Global sensitivity analysis (GSA) of numerical simulators aims at studying the global impact of the input uncertainties on the output. To perform the GSA, statistical tools based on inputs/output dependence measures are commonly used. We focus here o
To estimate direct and indirect effects of an exposure on an outcome from observed data strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be ac
In this paper we consider the nonparametric functional estimation of the drift of Gaussian processes using Paley-Wiener and Karhunen-Lo`eve expansions. We construct efficient estimators for the drift of such processes, and prove their minimaxity usin
We explore the applications of our previously established likelihood-ratio method for deriving concentration inequalities for a wide variety of univariate and multivariate distributions. New concentration inequalities for various distributions are de
We review a finite-sampling exponential bound due to Serfling and discuss related exponential bounds for the hypergeometric distribution. We then discuss how such bounds motivate some new results for two-sample empirical processes. Our development co