ترغب بنشر مسار تعليمي؟ اضغط هنا

Single crystal growth and physical property characterizations of mixed valent compound YbFe$_2$Al$_{10}$

69   0   0.0 ( 0 )
 نشر من قبل Nan Lin Wang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report single crystal growth and physical properties characterization of YbFe$_2$Al$_{10}$ compounds. The measurements of resistivity, magnetic susceptibility, and specific heat show different behaviors from previous studies on polycrystal samples. A mixed valent characteristic with moderate mass enhancement is indicated. In particular, the optical spectroscopy measurement reveals formation of multiple hybridization energy gaps which become progressively pronounced at low temperature. The multiple hybridization energy gaps are likely caused by the hybridizations between the flat band from Yb 4$f$ electrons and different bands of conduction electrons.

قيم البحث

اقرأ أيضاً

We have grown the new uranium compound URhIn$_5$ with the tetragonal HoCoGa$_5$-type by the In self flux method. In contrast to the nonmagnetic ground state of the isoelectronic analogue URhGa$_5$, URhIn$_5$ is an antiferromagnet with antiferromagnet ic transition temperature $T_{rm N}$ = 98 K. The moderately large electronic specific heat coefficient $gamma$ = 50 mJ/K$^2$mol demonstrates the contribution of 5$f$ electrons to the conduction band. On the other hand, magnetic susceptibility in the paramagnetic state roughly follows a Curie-Weiss law with a paramagnetic effective moment corresponding to a localized uranium ion. The crossover from localized to itinerant character at low temperature may occur around the characteristic temperature 150 K where the magnetic susceptibility and electrical resistivity show a marked anomaly.
102 - W. Tao , L. M. Chen , X. M. Wang 2013
The bulk single crystals of $S = 1$ chain compound Ni(C$_3$H$_{10}$N$_2$)$_2$NO$_2$ClO$_4$ are grown by using a slow evaporation method at a constant temperature and a slow cooling method. It is found that the optimum condition of growing large cryst als is via slow evaporation at 25 $^circ$C using 0.015 mol Ni(ClO$_4$)$_2$$cdot$6H$_2$O, 0.015 mol NaNO$_2$, and 0.03 mol 1,3-propanediamine liquid dissolved into 30 ml aqueous solvent. High-quality crystals with size up to $18 times 7.5 times 5$ mm$^3$ are obtained. The single crystals are characterized by measurements of x-ray diffraction, magnetic susceptibility, specific heat and thermal conductivity. The susceptibilities along three crystallographic axes are found to exhibit broad peaks at $sim 55$ K, and then decrease abruptly to zero at lower temperatures, which is characteristic of a Haldane chain system. The specific heat and the thermal conductivity along the $c$ axis can be attributed to the simple phononic contribution and are analyzed using the Debye approximation.
High-temperature indium flux growth was applied to prepare single crystals of GdRh$_2$Si$_2$ by a modified Bridgman method leading to mm-sized single crystals with a platelet habitus. Specific heat and susceptibility data of GdRh$_2$Si$_2$ exhibit a pronounced anomaly at $T_N = 107rm ,K$, where the AFM ordering sets in. Magnetic measurements on the single crystals were performed down to $T = 2$,K in external fields from B = 0 - 9,T applied along the $[100]$-, $[110]$- and $[001]$-direction of the tetragonal lattice. The effective magnetic moment determined from a Curie-Weiss fit agrees well with values from literature, and is larger than the theoretically predicted value. Electrical transport data recorded for current flow parallel and perpendicular to the $[001]$-direction show a large anisotropy below $T_N$. The residual resistivity ratio $rm RRR=rho_{300K}/rho_{0}sim 23$ demonstrates that we succeeded in preparing high-quality crystals using high-temperature indium flux-growth.
94 - X. D. Zhu , Y. P. Sun , X. B. Zhu 2008
Single crystal of Cu0.03TaS2 with low copper intercalated content was successfully grown via chemical iodine-vapor transport. The structural characterization results show that the copper intercalated 2H-Cu0.03TaS2 single crystal has the same structur e of the CdI2-type structure as the parent 2H-TaS2 crystal. Electrical resistivity and magnetization measurements reveal that 2H-Cu0.03TaS2 becomes a superconductor below 4.2 K. Besides, electrical resistivity and Hall effects results show that a charge density wave transition occurs at TCDW = 50 K.
We present a method for producing high quality KCo2As2 crystals, stable in air and suitable for a variety of measurements. X-ray diffraction, magnetic susceptibility, electrical transport and heat capacity measurements confirm the high quality and an absence of long range magnetic order down to at least 2 K. Residual resistivity values approaching 0.25 $muOmega$~cm are representative of the high quality and low impurity content, and a Sommerfeld coefficient $gamma$ = 7.3 mJ/mol K$^2$ signifies weaker correlations than the Fe-based counterparts. Together with Hall effect measurements, angle-resolved photoemission experiments reveal a Fermi surface consisting of electron pockets at the center and corner of the Brillouin zone, in line with theoretical predictions and in contrast to the mixed carrier types of other pnictides with the ThCr2Si2 structure. A large, linear magnetoresistance of 200% at 14~T, together with an observed linear and hyperbolic, rather than parabolic, band dispersions are unusual characteristics of this metallic compound and may indicate more complex underlying behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا