ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical properties and electronic structure of single-crystal KCo$_2$As$_2$

264   0   0.0 ( 0 )
 نشر من قبل Daniel Campbell
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for producing high quality KCo2As2 crystals, stable in air and suitable for a variety of measurements. X-ray diffraction, magnetic susceptibility, electrical transport and heat capacity measurements confirm the high quality and an absence of long range magnetic order down to at least 2 K. Residual resistivity values approaching 0.25 $muOmega$~cm are representative of the high quality and low impurity content, and a Sommerfeld coefficient $gamma$ = 7.3 mJ/mol K$^2$ signifies weaker correlations than the Fe-based counterparts. Together with Hall effect measurements, angle-resolved photoemission experiments reveal a Fermi surface consisting of electron pockets at the center and corner of the Brillouin zone, in line with theoretical predictions and in contrast to the mixed carrier types of other pnictides with the ThCr2Si2 structure. A large, linear magnetoresistance of 200% at 14~T, together with an observed linear and hyperbolic, rather than parabolic, band dispersions are unusual characteristics of this metallic compound and may indicate more complex underlying behavior.



قيم البحث

اقرأ أيضاً

We report the physical properties and electronic structure calculations of a layered chromium oxypnictide, Sr$_2$Cr$_3$As$_2$O$_2$, which crystallizes in a Sr$_2$Mn$_3$As$_2$O$_2$-type structure containing both CrO$_2$ planes and Cr$_2$As$_2$ layers. The newly synthesized material exhibits a metallic conduction with a dominant electron-magnon scattering. Magnetic and specific-heat measurements indicate at least two intrinsic magnetic transitions below room temperature. One is an antiferromagnetic transition at 291 K, probably associated with a spin ordering in the Cr$_2$As$_2$ layers. Another transition is broad, occurring at around 38 K, and possibly due to a short-range spin order in the CrO$_2$ planes. Our first-principles calculations indicate predominant two-dimensional antiferromagnetic exchange couplings, and suggest a KG-type (i.e. K$_2$NiF$_4$ type for CrO$_2$ planes and G type for Cr$_2$As$_2$ layers) magnetic structure, with reduced moments for both Cr sublattices. The corresponding electronic states near the Fermi energy are mostly contributed from Cr-3$d$ orbitals which weakly (modestly) hybridize with the O-2$p$ (As-4$p$) orbitals in the CrO$_2$ (Cr$_2$As$_2$) layers. The bare bandstructure density of states at the Fermi level is only $sim$1/4 of the experimental value derived from the low-temperature specific-heat data, consistent with the remarkable electron-magnon coupling. The title compound is argued to be a possible candidate to host superconductivity.
We studied the physical properties of two Kondo-lattice compounds, CeRu$_2$As$_2$ and CeIr$_2$As$_2$, by a combination of electric transport, magnetic and thermodynamic measurements. They are of ThCr$_2$Si$_2$-type and CaBe$_2$Ge$_2$-type crystalline structures, respectively. CeRu$_2$As$_2$ shows localized long-range antiferromagnetic ordering below $T_N$=4.3 K, with a moderate electronic Sommerfeld coefficient $gamma_0$=35 mJ/mol$cdot$K$^2$. A field-induced metamagnetic transition is observed near 2 T below $T_N$. Magnetic susceptibility measurements on aligned CeRu$_2$As$_2$ powders suggest that it has an easy axis and that the cerium moments align uniaxially along $mathbf{c}$ axis. In contrast, CeIr$_2$As$_2$ is a magnetically nonordered heavy-fermion metal with enhanced $gamma_0$$>$300 mJ/mol$cdot$K$^2$. The initial onset Kondo temperatures of the two compounds are respectively 6 K and 30 K. We discuss the role of the crystal structure to the strength of Kondo coupling. This work provides two new dense Kondo-lattice materials for further investigations on electronic correlation, quantum criticality and heavy-electron effects.
We studied the relationship between the charge doping and the correlation, and its effects on the spectral function of the BaFe$_2$As$_2$ compound in the framework of the density functional theory combined with the dynamical mean field theory (DFT+DM FT). The calculated mass enhancements showed that the electronic correlation varies systematically from weak to strong when moving from the heavily electron-doped regime to the heavily hole-doped one. Since the compound has a multi-orbital nature, the correlation is orbital-dependent and it increases as hole-doping increases. The Fe-3d$_{xy}$ (xy) orbital is much more correlated than the other orbitals, because it reaches its half-filled situation and has a narrower energy scale around the Fermi energy. Our findings can be consistently understood as the tendency of the heavily hole-doped BaFe$_2$As$_2$ compound to an orbital-selective Mott phase (OSMP). Moreover, the fact that the superconducting state of the heavily hole-doped BaFe$_2$As$_2$ is an extreme case of such a selective Mottness constrains the non-trivial role of the electronic correlation in iron-pnictide superconductors. In addition, the calculated spectral function shows a behavior that is compatible with experimental results reported for every charge-doped BaFe$_2$As$_2$ compound and clarifies the importance of the characterization of its physical effects on the material.
We have grown the single crystal of PrRhAl$_4$Si$_2$, which crystallizes in the tetragonal crystal structure. From the low temperature physical property measurements like, magnetic susceptibility, magnetization, heat capacity and electrical resistivi ty, we found that this compound does not show any magnetic ordering down to 70~mK. Our crystal field calculations on the magnetic susceptibility and specific heat measurements reveal that the 9-fold degenerate $(2J+1)$ levels of Pr atom in PrRhAl$_4$Si$_2$, splits into 7 levels, with a singlet ground state and a well separated excited doublet state at 123~K, with a overall level splitting energy of 320~K.
We report the synthesis and basic physical properties of single crystals of CaFe2As2, an isostructural compound to BaFe2As2 which has been recently doped to produce superconductivity. CaFe2As2 crystalizes in the ThCr2Si2 structure with lattice parame ters a = 3.907(4) A and c = 11.69(2) A. Magnetic susceptibility, resistivity, and heat capacity all show a first order phase transition at T_0 171 K. The magnetic susceptibility is nearly isotropic from 2 K to 350 K. The heat capacity data gives a Sommerfeld coefficient of 8.2 +- 0.3 mJ/molK2, and does not reveal any evidence for the presence of high frequency (> 300 K) optical phonon modes. The Hall coefficient is negative below the transition indicating dominant n-type carriers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا