ﻻ يوجد ملخص باللغة العربية
In 1930, Kuratowski showed that $K_{3,3}$ and $K_5$ are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. v{S}ir{a}v{n} and Kochol showed that there are infinitely many $k$-crossing-critical graphs for any $kge 2$, even if restricted to simple $3$-connected graphs. Recently, $2$-crossing-critical graphs have been completely characterized by Bokal, Oporowski, Richter, and Salazar. We present a simplified description of large 2-crossing-critical graphs and use this simplification to count Hamiltonian cycles in such graphs. We generalize this approach to an algorithm counting Hamiltonian cycles in all 2-tiled graphs, thus extending the results of Bodrov{z}a-Pantic, Kwong, Doroslovav{c}ki, and Pantic for $n = 2$.
Hakimi, Schmeichel, and Thomassen in 1979 conjectured that every $4$-connected planar triangulation $G$ on $n$ vertices has at least $2(n-2)(n-4)$ Hamiltonian cycles, with equality if and only if $G$ is a double wheel. In this paper, we show that eve
We prove that if $G$ is a $k$-partite graph on $n$ vertices in which all of the parts have order at most $n/r$ and every vertex is adjacent to at least a $1-1/r+o(1)$ proportion of the vertices in every other part, then $G$ contains the $(r-1)$-st power of a Hamiltonian cycle
Barnettes conjecture is an unsolved problem in graph theory. The problem states that every 3-regular (cubic), 3-connected, planar, bipartite (Barnette) graph is Hamiltonian. Partial results have been derived with restrictions on number of vertices, s
For a planar graph $H$, let $operatorname{mathbf{N}}_{mathcal P}(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. In this paper, we prove that $operatorname{mathbf{N}}_{mathcal P}(n,P_7)sim{4over 27}n^4$, $operatorname{
The toughness of a noncomplete graph $G$ is the maximum real number $t$ such that the ratio of $|S|$ to the number of components of $G-S$ is at least $t$ for every cutset $S$ of $G$, and the toughness of a complete graph is defined to be $infty$. Det