ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-shell excitations in doubly magic 132Sn and its nearest neighbours

163   0   0.0 ( 0 )
 نشر من قبل Maitreyee Saha Sarkar
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Large scale shell model calculations have been performed to study the excitation spectra of 132Sn and its nearest neighbours with a new cross-shell interaction constructed from two widely used interactions, sn100pn and CWG, of this mass region. A few of the two-body matrix elements have been tuned to reproduce the low-lying multiplet states of 132Sn. This is the first full scale shell model study of 132Sn energy spectra as well as transition probabilities. The excitation spectra for other nearest neighbours are reproduced reasonably well. The most important observable calculated are the E1 transition probabilities, which were so far beyond the scope of calculations with the existing interactions.



قيم البحث

اقرأ أيضاً

184 - Yifei Niu , Gianluca Colo , 2015
The scope of the paper is to apply a state-of-the-art beyond mean-field model to the description of the Gamow-Teller response in atomic nuclei. This topic recently attracted considerable renewed interest, due, in particular, to the possibility of per forming experiments in unstable nuclei. We study the cases of $^{48}$Ca, $^{78}$Ni, $^{132}$Sn and $^{208}$Pb. Our model is based on a fully self-consistent Skyrme Hartree-Fock plus random phase approximation. The same Skyrme interaction is used to calculate the coupling between particles and vibrations, which leads to the mixing of the Gamow-Teller resonance with a set of doorway states and to its fragmentation. We compare our results with available experimental data. The microscopic coupling mechanism is also discussed in some detail.
We report on a study of exotic nuclei around doubly magic 132Sn in terms of the shell model employing a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. The short-range repulsion of the latter is renormalized by con structing a smooth low-momentum potential, V-low-k, that is used directly as input for the calculation of the effective interaction. In this paper, we focus attention on proton-neutron multiplets in the odd-odd nuclei 134Sb, 136Sb. We show that the behavior of these multiplets is quite similar to that of the analogous multiplets in the counterpart nuclei in the 208Pb region, 210Bi and 212Bi.
We report on a study of exotic nuclei around doubly magic 132Sn in terms of the shell model employing a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. The short-range repulsion of the bare potential is renormalize d by constructing a smooth low-momentum potential, V-low-k, that is used directly as input for the calculation of the effective interaction. In this paper we focus attention on the nuclei 134Sn and 135Sb which, with an N/Z ratio of 1.68 and 1.65, respectively, are at present the most exotic nuclei beyond 132Sn for which information exists on excited states. Comparison shows that the calculated results for both nuclei are in very good agreement with the experimental data. We present our predictions of the hitherto unknown spectrum of 136Sn.
The study of exotic nuclei around 132Sn is a subject of current experimental and theoretical interest. Experimental information for nuclei in the vicinity of 132Sn, which have been long inaccessible to spectroscopic studies, is now available thanks t o new advanced facilities and techniques. The experimental data which have been now become available for these neutron-rich nuclei may suggest a modification in the shell structure. They are, in fact, somewhat different from what one might expect by extrapolating the existing results for N<82, and as a possible explanation a change in the single-proton level scheme has been suggested. The latter would be caused by a more diffuse nuclear surface, and could be seen as a precursor of major effects which should show up at larger neutron excess. New data offer therefore the opportunity to test the shell model and look for a possible evolution of shell structure when going toward neutron drip line. This is stimulating shell-model studies in this region. Here, we present an overview of recent shell-model studies of 132Sn neighbors, focusing attention on those calculations employing realistic effective interactions.
278 - V. De Donno , G. Co , C. Maieron 2009
We have studied the low lying magnetic spectra of 12C, 16O, 40Ca, 48Ca and 208Pb nuclei within the Random Phase Approximation (RPA) theory, finding that the description of low-lying magnetic states of doubly-closed-shell nuclei imposes severe constra ints on the spin and tensor terms of the nucleon-nucleon effective interaction. We have first made an investigation by using four phenomenological effective interactions and we have obtained good agreement with the experimental magnetic spectra, and, to a lesser extent, with the electron scattering responses. Then we have made self-consistent RPA calculations to test the validity of the finite-range D1 Gogny interaction. For all the nuclei under study we have found that this interaction inverts the energies of all the magnetic states forming isospin doublets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا