ترغب بنشر مسار تعليمي؟ اضغط هنا

Light incoherence due to background space fluctuations

52   0   0.0 ( 0 )
 نشر من قبل Michael Maziashvili
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Working by analogy, we use the description of light fluctuations due to random collisions of the radiating atoms to figure out why the reduction of the coherence for light propagating a cosmological distance in the fluctuating background space is negligibly small to be observed by the stellar interferometry.

قيم البحث

اقرأ أيضاً

It was argued in a number of papers that the gravitational potential calculated by using the modified QFT that follows from the Planck-length deformed uncertainty relation implies the existence of black-hole remnants of the order of the Planck-mass. Usually this sort of QFTs are endowed with two specific features, the modified dispersion relation, which is universal, and the concept of minimum length, which, however, is not universal. While the emergence of the minimum-length most readily leads to the idea of the black hole remnants, here we examine the behaviour of the potential that follows from the Planck-length deformed QFT in absence of the minimum length and show that it might also lead to the formation of the Planck mass black holes in some particular cases. The calculations are made for higher-dimensional case as well. Such black hole remnants might be considered as a possible candidates for the dark-matter.
Hawking radiation remains a crucial theoretical prediction of semi-classical gravity and is considered one of the critical tests for a model of quantum gravity. However, Hawkings original derivation used quantum field theory on a fixed background. Ef forts have been made to include the spacetime fluctuations arising from the quantization of the dynamical degrees of freedom of gravity itself and study the effects on the Hawking particles. Using semi-classical analysis, we study the effects of quantum fluctuations of scalar field stress-tensors in asymptotic non-flat spherically symmetric black-hole space-times. Using two different approaches, we obtain a critical length-scale from the horizon at which gravitational interactions become large, i.e., when the back reaction to the metric due to the scalar field becomes significant. For 4-D Schwarzschild AdS (SAdS) and Schwarzschild de Sitter (SdS), the number of relevant modes for the back-reaction is finite only for a specific range of values of M/L (where M is the mass of the black-hole, and L is related to the modulus of the cosmological constant). For SAdS (SdS), the number of relevant modes is infinite for M/L $sim$ 1 (0.2 < M/L < $frac{1}{3sqrt{3}}$). We discuss the implications of these results for the late stages of black-hole evaporation.
We consider an extremal Reissner-Nordstr{o}m black hole perturbed by a neutral massive point particle, which falls in radially. We study the linear metric perturbation in the vicinity of the black hole and find that the $l=0$ and $l=1$ spherical modes of the metric oscillate rather than decay.
Deflection of light due to massive objects was predicted by Einstein in his General Theory of Relativity. This deflection of light has been calculated by many researchers in past, for spherically symmetric objects. But, in reality, most of these grav itating objects are not spherical instead they are ellipsoidal ( oblate) in shape. The objective of the present work is to study theoretically the effect of this ellipticity on the trajectory of a light ray. Here, we obtain a converging series expression for the deflection of a light ray due to an ellipsoidal gravitating object, characterised by an ellipticity parameter. As a boundary condition, by setting the ellipticity parameter to be equal to zero, we get back the same expression for deflection as due to Schwarzschild object. It is also found that the additional contribution in deflection angle due to this ellipticity though small, but could be typically higher than the similar contribution caused by the rotation of a celestial object. Therefore for a precise estimate of the deflection due to a celestial object, the calculations presented here would be useful.
93 - A.V. Maximov , J.G. Shaw , 2019
The success of direct laser-driven inertial confinement fusion (ICF) relies critically on the efficient coupling of laser light to plasma. At ignition scale, the absolute stimulated Raman scattering (SRS) instability can severely inhibit this couplin g by redirecting and strongly depleting laser light. This Letter describes a new dynamic saturation regime of the absolute SRS instability. The saturation occurs when spatiotemporal fluctuations in the ion-acoustic density detune the instability resonance. The dynamic saturation mitigates the strong depletion of laser light and enhances its transmission through the instability region, explaining the coupling of laser light to ICF targets at higher plasma densities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا