ﻻ يوجد ملخص باللغة العربية
Hawking radiation remains a crucial theoretical prediction of semi-classical gravity and is considered one of the critical tests for a model of quantum gravity. However, Hawkings original derivation used quantum field theory on a fixed background. Efforts have been made to include the spacetime fluctuations arising from the quantization of the dynamical degrees of freedom of gravity itself and study the effects on the Hawking particles. Using semi-classical analysis, we study the effects of quantum fluctuations of scalar field stress-tensors in asymptotic non-flat spherically symmetric black-hole space-times. Using two different approaches, we obtain a critical length-scale from the horizon at which gravitational interactions become large, i.e., when the back reaction to the metric due to the scalar field becomes significant. For 4-D Schwarzschild AdS (SAdS) and Schwarzschild de Sitter (SdS), the number of relevant modes for the back-reaction is finite only for a specific range of values of M/L (where M is the mass of the black-hole, and L is related to the modulus of the cosmological constant). For SAdS (SdS), the number of relevant modes is infinite for M/L $sim$ 1 (0.2 < M/L < $frac{1}{3sqrt{3}}$). We discuss the implications of these results for the late stages of black-hole evaporation.
We analyze the effects of the back reaction due to a conformal field theory (CFT) on a black hole spacetime with negative cosmological constant. We study the geometry numerically obtained by taking into account the energy momentum tensor of CFT appro
A numerical analysis shows that a class of scalar-tensor theories of gravity with a scalar field minimally and nonminimally coupled to the curvature allows static and spherically symmetric black hole solutions with scalar-field hair in asymptotically
We study the evaporation of black holes in non-commutative space-times. We do this by calculating the correction to the detectors response function for a moving mirror in terms of the noncommutativity parameter $Theta$ and then extracting the number
The aim of this work is to describe the complete family of non-expanding Plebanski-Demianski type D space-times and to present their possible interpretation. We explicitly express the most general form of such (electro)vacuum solutions with any cosmo
The effect of the Hawking temperature on the entanglement and teleportation for the scalar field in a most general, static and asymptotically flat black hole with spherical symmetry has been investigated. It is shown that the same initial entanglemen