ﻻ يوجد ملخص باللغة العربية
We present an updated calculation of the uncertainties on the atmospheric muon-neutrino flux arising from cosmic-ray primaries. For the first time, we include recent measurements of the cosmic-ray primaries collected since 2005. We apply a statistical technique that allows the determination of correlations between the parameters of the GSHL primary-flux parametrisation and the incorporation of these correlations into the uncertainty on the muon-neutrino flux. We obtain an uncertainty related to the primary cosmic rays of around $(5text{--}15)%$, depending on energy, which is about a factor of two smaller than the previously determined uncertainty. The hadron production uncertainty is added in quadrature to obtain the total uncertainty on the neutrino flux, which is reduced by $approx 5%$. To take into account an unexpected hardening of the spectrum of primaries above energies of $100$ $text{GeV}$ observed in recent measurements, we propose an alternative parametrisation and discuss its impact on the neutrino flux uncertainties.
The fluxes of atmospheric muons and neutrinos are calculated by a three dimensional Monte Carlo simulation with the air shower code CORSIKA using the hadronic interaction models DPMJET, VENUS, GHEISHA, and UrQMD. For the simulation of low energy prim
Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic ray (UHECRs, above 10^8 GeV), photons, and neutr
Top-of-atmosphere (TOA) cosmic-ray (CR) fluxes from satellites and balloon-borne experiments are snapshots of the solar activity imprinted on the interstellar (IS) fluxes. Given a series of snapshots, the unknown IS flux shape and the level of modula
High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are requ
Gamma-ray bursts are short-lived, luminous explosions at cosmological distances, thought to originate from relativistic jets launched at the deaths of massive stars. They are among the prime candidates to produce the observed cosmic rays at the highe