ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-parametric determination of H and He interstellar fluxes from cosmic-ray data

185   0   0.0 ( 0 )
 نشر من قبل David Maurin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Top-of-atmosphere (TOA) cosmic-ray (CR) fluxes from satellites and balloon-borne experiments are snapshots of the solar activity imprinted on the interstellar (IS) fluxes. Given a series of snapshots, the unknown IS flux shape and the level of modulation (for each snapshot) can be recovered. We wish (i) to provide the most accurate determination of the IS H and He fluxes from TOA data alone, (ii) to obtain the associated modulation levels (and uncertainties) while fully accounting for the correlations with the IS flux uncertainties, and (iii) to inspect whether the minimal force-field approximation is sufficient to explain all the data at hand. Using H and He TOA measurements, including the recent high-precision AMS, BESS-Polar, and PAMELA data, we performed a non-parametric fit of the IS fluxes $J^{rm IS}_{rm H,~He}$ and modulation level $phi_i$ for each data-taking period. We relied on a Markov chain Monte Carlo (MCMC) engine to extract the probability density function and correlations (hence the credible intervals) of the sought parameters. Although H and He are the most abundant and best measured CR species, several datasets had to be excluded from the analysis because of inconsistencies with other measurements. From the subset of data passing our consistency cut, we provide ready-to-use best-fit and credible intervals for the H and He IS fluxes from MeV/n to PeV/n energy (with a relative precision in the range [2-10%] at 1$sigma$). Given the strong correlation between $J^{rm IS}$ and $phi_i$ parameters, the uncertainties on $J^{rm IS}$ translate into $Deltaphiapprox pm 30$~MV (at 1$sigma$) for all experiments. We also find that the presence of $^3$He in He data biases $phi$ towards higher $phi$ values by $sim 30$~MV. The force-field approximation gives an excellent ($chi^2/$dof$=1.02$) description of the recent high-precision TOA H and He fluxes.



قيم البحث

اقرأ أيضاً

We present an updated calculation of the uncertainties on the atmospheric muon-neutrino flux arising from cosmic-ray primaries. For the first time, we include recent measurements of the cosmic-ray primaries collected since 2005. We apply a statistica l technique that allows the determination of correlations between the parameters of the GSHL primary-flux parametrisation and the incorporation of these correlations into the uncertainty on the muon-neutrino flux. We obtain an uncertainty related to the primary cosmic rays of around $(5text{--}15)%$, depending on energy, which is about a factor of two smaller than the previously determined uncertainty. The hadron production uncertainty is added in quadrature to obtain the total uncertainty on the neutrino flux, which is reduced by $approx 5%$. To take into account an unexpected hardening of the spectrum of primaries above energies of $100$ $text{GeV}$ observed in recent measurements, we propose an alternative parametrisation and discuss its impact on the neutrino flux uncertainties.
This article aims at establishing new benchmark scenarios for Galactic cosmic-ray propagation in the GV-TV rigidity range, based on fits to the AMS-02 B/C data with the USINE v3.5 propagation code. We employ a new fitting procedure, cautiously taking into account data systematic error correlations in different rigidity bins and considering Solar modulation potential and leading nuclear cross-section as nuisance parameters. We delineate specific low, intermediate, and high-rigidity ranges that can be related to both features in the data and peculiar microphysics mechanisms resulting in spectral breaks. We single out a scenario which yields excellent fits to the data and includes all the presumably relevant complexity, the BIG model. This model has two limiting regimes: (i) the SLIM model, a minimal diffusion-only setup, and (ii) the QUAINT model, a convection-reacceleration model where transport is tuned by non-relativistic effects. All models lead to robust predictions in the high-energy regime ($gtrsim10$GV), i.e. independent of the propagation scenario: at $1sigma$, the diffusion slope $delta$ is $[0.43-0.53]$, whereas $K_{10}$, the diffusion coefficient at 10GV, is $[0.26-0.36]$kpc$^2$Myr$^{-1}$; we confirm the robustness of the high-energy break, with a typical value $Delta_hsim 0.2$. We also find a hint for a similar (reversed) feature at low rigidity around the B/C peak ($sim 4$GV) which might be related to some effective damping scale in the magnetic turbulence.
621 - A. W. Strong 2015
Precise gamma-ray emissivities from cosmic-ray interactions with interstellar gas have been recently derived using Fermi-LAT data, and used to constrain the local interstellar spectra of protons and leptons. We report on a continuing effort to exploi t these emissivities combined with the latest hadronic gamma-ray production cross-sections and other constraints such as synchrotron emission for the leptonic component. The interstellar spectra provide important information for heliospheric modulation, and cosmic-ray origin and propagation.
86 - Qiang Yuan 2018
We study the propagation and injection models of cosmic rays using the latest measurements of the Boron-to-Carbon ratio and fluxes of protons, Helium, Carbon, and Oxygen nuclei by the Alpha Magnetic Spectrometer and the Advanced Composition Explorer at top of the Earth, and the Voyager spacecraft outside the heliosphere. The ACE data during the same time interval of the AMS-02 data are extracted to minimize the complexity of the solar modulation effect. We find that the cosmic ray nucleus data favor a modified version of the diffusion-reacceleration scenario of the propagation. The diffusion coefficient is, however, required to increase moderately with decreasing rigidity at low energies, which has interesting implications on the particle and plasma interaction in the Milky Way. We further find that the low rigidity ($<$ a few GV) injection spectra are different for different compositions. The injection spectra are softer for lighter nuclei. These results are expected to be helpful in understanding the acceleration process of cosmic rays.
Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic ray (UHECRs, above 10^8 GeV), photons, and neutr inos, through photohadronic interactions between source photons and magnetically-confined energetic protons, that occur when relativistically-expanding matter shells loaded with baryons collide with one another. While neutrino observations by IceCube have now ruled out the simplest version of the internal shock model, we show that a revised calculation of the emission, together with the consideration of the full photohadronic cross section and other particle physics effects, results in a prediction of the prompt GRB neutrino flux that still lies one order of magnitude below the current upper bounds, as recently exemplified by the results from ANTARES. In addition, we show that by allowing protons to directly escape their magnetic confinement without interacting at the source, we are able to partially decouple the cosmic ray and prompt neutrino emission, which grants the freedom to fit the UHECR observations while respecting the neutrino upper bounds. Finally, we briefly present advances towards pinning down the precise relation between UHECRs and UHE neutrinos, including the baryonic loading required to fit UHECR observations, and we will assess the role that very large volume neutrino telescopes play in this.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا