ﻻ يوجد ملخص باللغة العربية
Top-of-atmosphere (TOA) cosmic-ray (CR) fluxes from satellites and balloon-borne experiments are snapshots of the solar activity imprinted on the interstellar (IS) fluxes. Given a series of snapshots, the unknown IS flux shape and the level of modulation (for each snapshot) can be recovered. We wish (i) to provide the most accurate determination of the IS H and He fluxes from TOA data alone, (ii) to obtain the associated modulation levels (and uncertainties) while fully accounting for the correlations with the IS flux uncertainties, and (iii) to inspect whether the minimal force-field approximation is sufficient to explain all the data at hand. Using H and He TOA measurements, including the recent high-precision AMS, BESS-Polar, and PAMELA data, we performed a non-parametric fit of the IS fluxes $J^{rm IS}_{rm H,~He}$ and modulation level $phi_i$ for each data-taking period. We relied on a Markov chain Monte Carlo (MCMC) engine to extract the probability density function and correlations (hence the credible intervals) of the sought parameters. Although H and He are the most abundant and best measured CR species, several datasets had to be excluded from the analysis because of inconsistencies with other measurements. From the subset of data passing our consistency cut, we provide ready-to-use best-fit and credible intervals for the H and He IS fluxes from MeV/n to PeV/n energy (with a relative precision in the range [2-10%] at 1$sigma$). Given the strong correlation between $J^{rm IS}$ and $phi_i$ parameters, the uncertainties on $J^{rm IS}$ translate into $Deltaphiapprox pm 30$~MV (at 1$sigma$) for all experiments. We also find that the presence of $^3$He in He data biases $phi$ towards higher $phi$ values by $sim 30$~MV. The force-field approximation gives an excellent ($chi^2/$dof$=1.02$) description of the recent high-precision TOA H and He fluxes.
We present an updated calculation of the uncertainties on the atmospheric muon-neutrino flux arising from cosmic-ray primaries. For the first time, we include recent measurements of the cosmic-ray primaries collected since 2005. We apply a statistica
This article aims at establishing new benchmark scenarios for Galactic cosmic-ray propagation in the GV-TV rigidity range, based on fits to the AMS-02 B/C data with the USINE v3.5 propagation code. We employ a new fitting procedure, cautiously taking
Precise gamma-ray emissivities from cosmic-ray interactions with interstellar gas have been recently derived using Fermi-LAT data, and used to constrain the local interstellar spectra of protons and leptons. We report on a continuing effort to exploi
We study the propagation and injection models of cosmic rays using the latest measurements of the Boron-to-Carbon ratio and fluxes of protons, Helium, Carbon, and Oxygen nuclei by the Alpha Magnetic Spectrometer and the Advanced Composition Explorer
Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic ray (UHECRs, above 10^8 GeV), photons, and neutr