ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron-Capture Element Abundances in Magellanic Cloud Planetary Nebulae

128   0   0.0 ( 0 )
 نشر من قبل Nick Sterling
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. L. Mashburn




اسأل ChatGPT حول البحث

We present near-infrared spectra of ten planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5-m Baade and 8.1-m Gemini South Telescopes, respectively. We detect Se and/or Kr emission lines in eight of these objects, the first detections of n-capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s-process enrichments of Kr (0.6-1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5-0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2--3 M$_{odot}$ progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s-process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2-0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n-capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s-process enrichments to be studied in PN populations with well-determined distances.



قيم البحث

اقرأ أيضاً

159 - N. C. Sterling 2020
Nebular spectroscopy is a valuable tool for assessing the production of heavy elements by slow neutron(n)-capture nucleosynthesis (the s-process). Several transitions of n-capture elements have been identified in planetary nebulae (PNe) in the last f ew years, with the aid of sensitive high-resolution near-infrared spectrometers. Combined with optical spectroscopy, the newly discovered near-infrared lines enable more accurate abundance determinations than previously possible, and provide access to elements that had not previously been studied in PNe or their progenitors. Neutron-capture elements have also been detected in PNe in the Sagittarius Dwarf galaxy and in the Magellanic Clouds. In this brief review, I discuss developments in observational studies of s-process enrichments in PNe, with an emphasis on the last five years, and note some open questions and preliminary trends.
536 - N. C. Sterling 2008
Spectroscopy of planetary nebulae (PNe) provides the means to investigate s-process enrichments of neutron(n)-capture elements that cannot be detected in asymptotic giant branch (AGB) stars. However, accurate abundance determinations of these element s present a challenge. Corrections for unobserved ions can be large and uncertain, since in many PNe only one ion of a given n-capture element has been detected. Furthermore, the atomic data governing the ionization balance of these species are not well-determined, inhibiting the derivation of accurate ionization corrections. We present initial results of a program that addresses these challenges. Deep high resolution optical spectroscopy of ~20 PNe has been performed to detect emission lines from trans-iron species including Se, Br, Kr, Rb, and Xe. The optical spectral region provides access to multiple ions of these elements, which reduces the magnitude and importance of uncertainties in the ionization corrections. In addition, experimental and theoretical efforts are providing determinations of the photoionization cross-sections and recombination rate coefficients of Se, Kr, and Xe ions. These new atomic data will make it possible to derive robust ionization corrections for these elements. Together, our observational and atomic data results will enable n-capture element abundances to be determined with unprecedented accuracy in ionized nebulae.
174 - N. C. Sterling 2007
We present results from the first large-scale survey of neutron(n)-capture element abundances in planetary nebulae (PNe). This survey was motivated by the fact that a PN may be enriched in n-capture elements if its progenitor star experienced s-proce ss nucleosynthesis during the asymptotic giant branch (AGB) phase. [Kr III] 2.199 and/or [Se IV] 2.287 $mu$m were detected in 81 PNe out of 120 PNe, for a detection rate of nearly 70%. We derive Se and Kr abundances or upper limits using ionization correction factors derived from photoionization models. A significant range is found in the Se and Kr abundances, from near solar (no enrichment), to enriched by a factor of ten. Our survey has increased the number of PNe with known n-capture element abundances by an order of magnitude, enabling us to explore correlations between s-process enrichments and other nebular and central star properties. In particular, the Se and Kr enrichments display a positive correlation with nebular C/O ratios, as theoretically expected. Peimbert Type I PNe and bipolar PNe, whose progenitors are believed to be intermediate-mass stars (>3-4 M_sun), exhibit little or no s-process enrichment. Interestingly, PNe with H-deficient [WC] central stars do not exhibit systematically larger s-process enrichments than other PNe, despite the fact that their central stars are enriched in C and probably n-capture elements. Finally, the few PNe in our sample with known or probable binary central star systems exhibit little s-process enrichment, which may be explained if binary interactions truncated their AGB phases. We also briefly discuss a new observational program to detect optical emission lines of n-capture elements, and new atomic data calculations that will greatly improve the accuracy of n-capture element abundance determinations in PNe.
Deep spectrophotometry has proved to be a fundamental tool to improve our knowledge on the chemical content of planetary nebulae. With the arrival of very efficient spectrographs installed in the largest ground-based telescopes, outstanding spectra h ave been obtained. These data are essential to constrain state-of-the-art nucleosynthesis models in asymptotic giant branch stars and, in general, to understand the chemical evolution of our Galaxy. In this paper we review the last advances on the chemical composition of the ionized gas in planetary nebulae based on faint emission lines observed through very deep spectrophotometric data.
We present 21 new radio-continuum detections at catalogued planetary nebula (PN) positions in the Large Magellanic Cloud (LMC) using all presently available data from the Australia Telescope Online Archive at 3, 6, 13 and 20 cm. Additionally, 11 prev iously detected LMC radio PNe are re-examined with $ 7 $ detections confirmed and reported here. An additional three PNe from our previous surveys are also studied. The last of the 11 previous detections is now classified as a compact HII region which makes for a total sample of 31 radio PNe in the LMC. The radio-surface brightness to diameter ($Sigma$-D) relation is parametrised as $Sigma propto {D^{ - beta }}$. With the available 6~cm $Sigma$-$D$ data we construct $Sigma$-$D$ samples from 28 LMC PNe and 9 Small Magellanic Cloud (SMC) radio detected PNe. The results of our sampled PNe in the Magellanic Clouds (MCs) are comparable to previous measurements of the Galactic PNe. We obtain $beta=2.9pm0.4$ for the MC PNe compared to $beta = 3.1pm0.4$ for the Galaxy. For a better insight into sample completeness and evolutionary features we reconstruct the $Sigma$-$D$ data probability density function (PDF). The PDF analysis implies that PNe are not likely to follow linear evolutionary paths. To estimate the significance of sensitivity selection effects we perform a Monte Carlo sensitivity simulation on the $Sigma$-$D$ data. The results suggest that selection effects are significant for values larger than $beta sim 2.6$ and that a measured slope of $beta=2.9$ should correspond to a sensitivity-free value of $sim 3.4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا