ﻻ يوجد ملخص باللغة العربية
Simulations of physical phenomena are essential to the expedient design of precision components in aerospace and other high-tech industries. These phenomena are often described by mathematical models involving partial differential equations (PDEs) without exact solutions. Modern design problems require simulations with a level of resolution that is difficult to achieve in a reasonable amount of time even in effectively parallelized solvers. Though the scale of the problem relative to available computing power is the greatest impediment to accelerating these applications, significant performance gains can be achieved through careful attention to the details of memory accesses. Parallelized PDE solvers are subject to a trade-off in memory management: store the solution for each timestep in abundant, global memory with high access costs or in a limited, private memory with low access costs that must be passed between nodes. The GPU implementation of swept time-space decomposition presented here mitigates this dilemma by using private (shared) memory, avoiding internode communication, and overwriting unnecessary values. It shows significant improvement in the execution time of the PDE solvers in one dimension achieving speedups of 6-2x for large and small problem sizes respectively compared to naive G
We present a highly scalable 3D fully-coupled Earth & ocean model of earthquake rupture and tsunami generation. We model seismic, acoustic and surface gravity wave propagation in elastic (Earth) and acoustic (ocean) materials sourced by physics-based
Developing efficient GPU kernels can be difficult because of the complexity of GPU architectures and programming models. Existing performance tools only provide coarse-grained suggestions at the kernel level, if any. In this paper, we describe GPA, a
WarpX is a general purpose electromagnetic particle-in-cell code that was originally designed to run on many-core CPU architectures. We describe the strategy followed to allow WarpX to use the GPU-accelerated nodes on OLCFs Summit supercomputer, a st
The MURaM (Max Planck University of Chicago Radiative MHD) code is a solar atmosphere radiative MHD model that has been broadly applied to solar phenomena ranging from quiet to active sun, including eruptive events such as flares and coronal mass eje
We report an efficient algorithm for calculating momentum-space integrals in solid state systems on modern graphics processing units (GPUs). Our algorithm is based on the tetrahedron method, which we demonstrate to be ideally suited for execution in