ﻻ يوجد ملخص باللغة العربية
Developing efficient GPU kernels can be difficult because of the complexity of GPU architectures and programming models. Existing performance tools only provide coarse-grained suggestions at the kernel level, if any. In this paper, we describe GPA, a performance advisor for NVIDIA GPUs that suggests potential code optimization opportunities at a hierarchy of levels, including individual lines, loops, and functions. To relieve users of the burden of interpreting performance counters and analyzing bottlenecks, GPA uses data flow analysis to approximately attribute measured instruction stalls to their root causes and uses information about a programs structure and the GPU to match inefficiency patterns with suggestions for optimization. To quantify each suggestions potential benefits, we developed PC sampling-based performance models to estimate its speedup. Our experiments with benchmarks and applications show that GPA provides an insightful report to guide performance optimization. Using GPA, we obtained speedups on a Volta V100 GPU ranging from 1.01$times$ to 3.53$times$, with a geometric mean of 1.22$times$.
The development of NekRS, a GPU-oriented thermal-fluids simulation code based on the spectral element method (SEM) is described. For performance portability, the code is based on the open concurrent compute abstraction and leverages scalable developm
The need for Linux system administrators to do performance management has returned with a vengeance. Why? The cloud. Resource consumption in the cloud is all about pay-as-you-go. This article shows you how performance models can find the most cost-ef
CUDA and OpenCL are two different frameworks for GPU programming. OpenCL is an open standard that can be used to program CPUs, GPUs, and other devices from different vendors, while CUDA is specific to NVIDIA GPUs. Although OpenCL promises a portable
This work examines the performance of leading-edge systems designed for machine learning computing, including the NVIDIA DGX-2, Amazon Web Services (AWS) P3, IBM Power System Accelerated Compute Server AC922, and a consumer-grade Exxact TensorEX TS4
Hardware platforms in high performance computing are constantly getting more complex to handle even when considering multicore CPUs alone. Numerous features and configuration options in the hardware and the software environment that are relevant for