ﻻ يوجد ملخص باللغة العربية
We present two-point correlation function statistics of the mass and the halos in the chameleon $f(R)$ modified gravity scenario using a series of large volume N-body simulations. Three distinct variations of $f(R)$ are considered (F4, F5 and F6) and compared to a fiducial $Lambda$CDM model in the redshift range $z in [0,1]$. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales $> 20 h^{-1} mathrm{Mpc}$ agrees with the linear General Relativity (GR) Kaiser formula for the viable $f(R)$ models considered. We consider three halo populations characterized by spatial abundances comparable to that of luminous red galaxies (LRGs) and galaxy clusters. The redshift-space halo correlation functions of F4 and F5 deviate significantly from $Lambda$CDM at intermediate and high redshift, as the $f(R)$ halo bias is smaller or equal to that of the $Lambda$CDM case. Finally we introduce a new model independent clustering statistic to distinguish $f(R)$ from GR: the relative halo clustering ratio -- $mathcal{R}$. The sampling required to adequately reduce the scatter in $mathcal{R}$ will be available with the advent of the next generation galaxy redshift surveys. This will foster a prospective avenue to obtain largely model-independent cosmological constraints on this class of modified gravity models.
The mapping of galaxy clustering from real space to redshift space introduces the anisotropic property to the measured galaxy density power spectrum in redshift space, known as the redshift space distortion (RSD) effect. The mapping formula is intrin
We use large volume N-body simulations to predict the clustering of dark matter in redshift space in f(R) modified gravity cosmologies. This is the first time that the nonlinear matter and velocity fields have been resolved to such a high level of ac
Modifications of the equations of general relativity at large distances offer one possibility to explain the observed properties of our Universe without invoking a cosmological constant. Numerous proposals for such modified gravity cosmologies exist,
The statistical properties of dark matter halos, the building blocks of cosmological observables associated with structure in the universe, offer many opportunities to test models for cosmic acceleration, especially those that seek to modify gravitat
The use of photometric redshifts in cosmology is increasing. Often, however these photo-zs are treated like spectroscopic observations, in that the peak of the photometric redshift, rather than the full probability density function (PDF), is used. Th