ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-analytic galaxy formation in f(R)-gravity cosmologies

395   0   0.0 ( 0 )
 نشر من قبل Fabio Fontanot
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabio Fontanot




اسأل ChatGPT حول البحث

Modifications of the equations of general relativity at large distances offer one possibility to explain the observed properties of our Universe without invoking a cosmological constant. Numerous proposals for such modified gravity cosmologies exist, but often their consequences for structure formation in the non-linear sector are not yet accurately known. In this work, we employ high-resolution numerical simulations of f(R)-gravity models coupled with a semi-analytic model (SAM) for galaxy formation to obtain detailed predictions for the evolution of galaxy properties. The f(R)-gravity models imply the existence of a `fifth-force, which is however locally suppressed, preserving the successes of general relativity on solar system scales. We show that dark matter haloes in f(R)-gravity models are characterized by a modified virial scaling with respect to the LCDM scenario, reflecting a higher dark matter velocity dispersion at a given mass. This effect is taken into account in the SAM by an appropriate modification of the mass--temperature relation. We find that the statistical properties predicted for galaxies (such as the stellar mass function and the cosmic star formation rate) in f(R)-gravity show generally only very small differences relative to LCDM, smaller than the dispersion between the results of different SAM models, which can be viewed as a measure of their systematic uncertainty. We also demonstrate that galaxy bias is not able to disentangle between f(R)-gravity and the standard cosmological scenario. However, f(R)-gravity imprints modifications in the linear growth rate of cosmic structures at large scale, which can be recovered from the statistical properties of large galaxy samples.

قيم البحث

اقرأ أيضاً

Testing a subset of viable cosmological models beyond General Relativity (GR), with implications for cosmic acceleration and the Dark Energy associated with it, is within the reach of Rubin Observatory Legacy Survey of Space and Time (LSST) and a par t of its endeavor. Deviations from GR-w(z)CDM models can manifest in the growth rate of structure and lensing, as well as in screening effects on non-linear scales. We explore the constraining power of small-scale deviations predicted by the f(R) Hu-Sawicki Modified Gravity (MG) candidate, by emulating this model with COLA (COmoving Lagrangian Acceleration) simulations. We present the experimental design, data generation, and interpolation schemes in cosmological parameters and across redshifts for the emulation of the boost in the power spectra due to Modified Gravity effects. Three preliminary applications of the emulator highlight the sensitivity to cosmological parameters, Fisher forecasting and Markov Chain Monte Carlo inference for a fiducial cosmology. This emulator will play an important role for future cosmological analysis handling the formidable amount of data expected from Rubin Observatory LSST.
182 - Baojiu Li ICC , Durham 2017
We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon $f(R)$ gravity - a leading candidate of non-standard gravity models. For the analysis we have created mock galaxy catalogues based on dark matter haloes from two se ts of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the $f(R)$ and $Lambda$CDM models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the $f(R)$ model predicts an enhancement of the convergence power spectrum by up to $sim30%$ compared to the standard $Lambda$CDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5% on separations above $sim1$-$2h^{-1}$Mpc, because the latter is a cross correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy auto correlations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in $f(R)$ gravity. We find that the galaxy-matter cross correlation coefficient remains at unity down to $sim2$-$3h^{-1}$Mpc at relevant redshifts even in $f(R)$ gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allow to break the degeneracy between $f(R)$ gravity and other cosmological parameters such as $Omega_m$ and $sigma_8$.
In this article, we seek exact charged spherically symmetric black holes (BHs) with considering $f(mathcal{R})$ gravitational theory. These BHs are characterized by convolution and error functions. Those two functions depend on a constant of integrat ion which is responsible to make such a solution deviate from the Einstein general relativity (GR). The error function which constitutes the charge potential of the Maxwell field depends on the constant of integration and when this constant is vanishing we can not reproduce the Reissner-Nordstrom BH in the lower order of $f(mathcal{R})$. This means that we can not reproduce Reissner-Nordstrom BH in lower-order-curvature theory, i.e., in GR limit $f(mathcal{R})=mathcal{R}$, we can not get the well known charged BH. We study the physical properties of these BHs and show that it is asymptotically approached as a flat spacetime or approach AdS/dS spacetime. Also, we calculate the invariants of the BHS and show that the singularities are milder than those of BHs of GR. Additionally, we derive the stability condition through the use of geodesic deviation. Moreover, we study the thermodynamics of our BH and investigate the impact of the higher-order-curvature theory. Finally, we show that all the BHs are stable and have radial speed equal to one through the use of odd-type mode.
We present two-point correlation function statistics of the mass and the halos in the chameleon $f(R)$ modified gravity scenario using a series of large volume N-body simulations. Three distinct variations of $f(R)$ are considered (F4, F5 and F6) and compared to a fiducial $Lambda$CDM model in the redshift range $z in [0,1]$. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales $> 20 h^{-1} mathrm{Mpc}$ agrees with the linear General Relativity (GR) Kaiser formula for the viable $f(R)$ models considered. We consider three halo populations characterized by spatial abundances comparable to that of luminous red galaxies (LRGs) and galaxy clusters. The redshift-space halo correlation functions of F4 and F5 deviate significantly from $Lambda$CDM at intermediate and high redshift, as the $f(R)$ halo bias is smaller or equal to that of the $Lambda$CDM case. Finally we introduce a new model independent clustering statistic to distinguish $f(R)$ from GR: the relative halo clustering ratio -- $mathcal{R}$. The sampling required to adequately reduce the scatter in $mathcal{R}$ will be available with the advent of the next generation galaxy redshift surveys. This will foster a prospective avenue to obtain largely model-independent cosmological constraints on this class of modified gravity models.
89 - Elise Jennings 2012
We use large volume N-body simulations to predict the clustering of dark matter in redshift space in f(R) modified gravity cosmologies. This is the first time that the nonlinear matter and velocity fields have been resolved to such a high level of ac curacy over a broad range of scales in this class of models. We find significant deviations from the clustering signal in standard gravity, with an enhanced boost in power on large scales and stronger damping on small scales in the f(R) models compared to GR at redshifts z<1. We measure the velocity divergence (P_theta theta) and matter (P_delta delta) power spectra and find a large deviation in the ratios sqrt{P_theta theta/P_delta delta} and P_delta theta/P_deltadelta, between the f(R) models and GR for 0.03<k/(h/Mpc)<0.5. In linear theory these ratios equal the growth rate of structure on large scales. Our results show that the simulated ratios agree with the growth rate for each cosmology (which is scale dependent in the case of modified gravity) only for extremely large scales, k<0.06h/Mpc at z=0. The velocity power spectrum is substantially different in the f(R) models compared to GR, suggesting that this observable is a sensitive probe of modified gravity. We demonstrate how to extract the matter and velocity power spectra from the 2D redshift space power spectrum, P(k,mu), and can recover the nonlinear matter power spectrum to within a few percent for k<0.1h/Mpc. However, the model fails to describe the shape of the 2D power spectrum demonstrating that an improved model is necessary in order to reconstruct the velocity power spectrum accurately. The same model can match the monopole moment to within 3% for GR and 10% for the f(R) cosmology at k<0.2 h/Mpc at z=1. Our results suggest that the extraction of the velocity power spectrum from future galaxy surveys is a promising method to constrain deviations from GR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا