ترغب بنشر مسار تعليمي؟ اضغط هنا

Protected State Transfer via an Approximate Quantum Adder

68   0   0.0 ( 0 )
 نشر من قبل Mikel Sanz
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a decoherence protected protocol for sending single photon quantum states through depolarizing channels. This protocol is implemented via an approximate quantum adder engineered through spontaneous parametric down converters, and shows higher success probability than distilled quantum teleportation protocols for distances below a threshold depending on the properties of the channel.



قيم البحث

اقرأ أيضاً

Classical microwave circuit theory is incapable of representing some phenomena at the quantum level. To include quantum statistical effects when treating microwave networks, various theoretical treatments can be employed such as quantum input-output network (QION) theory and SLH theory. However, these require a reformulation of classical microwave theory. To make these topics comprehensible to an electrical engineer, we demonstrate some underpinnings of microwave quantum optics in terms of microwave engineering. For instance, we equate traveling-wave phasors in a transmission line ($V_0^+$) directly to bosonic field operators. Furthermore, we extend QION to include a state-space representation and a transfer function for a single port quantum network. This serves as a case study to highlight how microwave methodologies can be applied in open quantum systems. Although the same conclusion could be found from a full SLH theory treatment, our method was derived directly from first principles of QION.
Present-day, noisy, small or intermediate-scale quantum processors---although far from fault-tolerant---support the execution of heuristic quantum algorithms, which might enable a quantum advantage, for example, when applied to combinatorial optimiza tion problems. On small-scale quantum processors, validations of such algorithms serve as important technology demonstrators. We implement the quantum approximate optimization algorithm (QAOA) on our hardware platform, consisting of two superconducting transmon qubits and one parametrically modulated coupler. We solve small instances of the NP-complete exact-cover problem, with 96.6% success probability, by iterating the algorithm up to level two.
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired a nd known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. We quantify security in our implementation using the concept of the one-time pad. Our results represent a significant step towards microwave quantum networks between superconducting circuits.
A cavity quantum electrodynamical (QED) system beyond the strong-coupling regime is expected to exhibit intriguing quantum phenomena. Here we report a direct measurement of the photon-dressed qubit transition frequencies up to four photons by harness ing the same type of state transitions in an ultrastrongly coupled circuit-QED system realized by inductively coupling a superconducting flux qubit to a coplanar-waveguide resonator. This demonstrates a convincing observation of the photon-dressed Bloch-Siegert shift in the ultrastrongly coupled quantum system. Moreover, our results show that the photon-dressed Bloch-Siegert shift becomes more pronounced as the photon number increases, which is a characteristic of the quantum Rabi model.
We propose a simple circuit quantum electrodynamics (QED) experiment to test the generation of entanglement between two superconducting qubits. Instead of the usual cavity QED picture, we study qubits which are coupled to an open transmission line an d get entangled by the exchange of propagating photons. We compute their dynamics using a full quantum field theory beyond the rotating-wave approximation and explore a variety of regimes which go from a weak coupling to the recently introduced ultrastrong coupling regime. Due to the existence of single photons traveling along the line with finite speed, our theory shows a light cone dividing the spacetime in two different regions. In one region, entanglement may only arise due to correlated vacuum fluctuations, while in the other the contribution from exchanged photons shows up.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا