ترغب بنشر مسار تعليمي؟ اضغط هنا

An engineers brief introduction to microwave quantum optics and a single-port state-space representation

78   0   0.0 ( 0 )
 نشر من قبل Kyle Sundqvist
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical microwave circuit theory is incapable of representing some phenomena at the quantum level. To include quantum statistical effects when treating microwave networks, various theoretical treatments can be employed such as quantum input-output network (QION) theory and SLH theory. However, these require a reformulation of classical microwave theory. To make these topics comprehensible to an electrical engineer, we demonstrate some underpinnings of microwave quantum optics in terms of microwave engineering. For instance, we equate traveling-wave phasors in a transmission line ($V_0^+$) directly to bosonic field operators. Furthermore, we extend QION to include a state-space representation and a transfer function for a single port quantum network. This serves as a case study to highlight how microwave methodologies can be applied in open quantum systems. Although the same conclusion could be found from a full SLH theory treatment, our method was derived directly from first principles of QION.

قيم البحث

اقرأ أيضاً

Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired a nd known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. We quantify security in our implementation using the concept of the one-time pad. Our results represent a significant step towards microwave quantum networks between superconducting circuits.
In the past several years, observational entropy has been developed as both a (time-dependent) quantum generalization of Boltzmann entropy, and as a rather general framework to encompass classical and quantum equilibrium and non-equilibrium coarse-gr ained entropy. In this paper we review the construction, interpretation, most important properties, and some applications of this framework. The treatment is self-contained and relatively pedagogical, aimed at a broad class of researchers.
Quantum illumination is a powerful sensing technique that employs entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. The promised advantage over classical strat egies is particularly evident at low signal powers, a feature which could make the protocol an ideal prototype for non-invasive biomedical scanning or low-power short-range radar. In this work we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields using a Josephson parametric converter to illuminate a room-temperature object at a distance of 1 meter in a free-space detection setup. We implement a digital phase conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared to the relative classical benchmark. Our results highlight the opportunities and challenges on the way towards a first room-temperature application of microwave quantum circuits.
The aim of this review is to provide quantum engineers with an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits. Over the past twenty years, the field has matured from a p redominantly basic research endeavor to one that increasingly explores the engineering of larger-scale superconducting quantum systems. Here, we review several foundational elements -- qubit design, noise properties, qubit control, and readout techniques -- developed during this period, bridging fundamental concepts in circuit quantum electrodynamics (cQED) and contemporary, state-of-the-art applications in gate-model quantum computation.
This article is a tutorial on the quantum treatment of superconducting electrical circuits. It is intended for new researchers with limited or no experience with the field, but should be accessible to anyone with a bachelors degree in physics or simi lar. The tutorial has three parts. The first part introduces the basic methods used in quantum circuit analysis, starting from a circuit diagram and ending with a quantized Hamiltonian truncated to the lowest levels. The second part introduces more advanced methods supplementing the methods presented in the first part. The third part is a collection of worked examples of superconducting circuits. Besides the examples in the third part, the two first parts also includes examples in parallel with the introduction of the methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا