ترغب بنشر مسار تعليمي؟ اضغط هنا

Similar temperature scale for valence changes in Kondo lattices with different Kondo temperatures

56   0   0.0 ( 0 )
 نشر من قبل Kurt Kummer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kondo model predicts that both the valence at low temperatures and its temperature dependence scale with the characteristic energy T_K of the Kondo interaction. Here, we study the evolution of the 4f occupancy with temperature in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In agreement with simple theoretical models, we observe a scaling between the valence at low temperature and T_K obtained from thermodynamic measurements. In contrast, the temperature scale T_v at which the valence increases with temperature is almost the same in all investigated materials while the Kondo temperatures differ by almost four orders of magnitude. This observation is in remarkable contradiction to both naive expectation and precise theoretical predictions of the Kondo model, asking for further theoretical work in order to explain our findings. Our data exclude the presence of a quantum critical valence transition in YbRh2Si2.

قيم البحث

اقرأ أيضاً

We use hard x-ray photoemission spectroscopy (HAXPES) to investigate the electronic structure of YbAl2, for which the Yb valence has not been consistently reported to date. The bulk sensitivity and the analytical simplicity provided by the Yb 3d core -level HAXPES allow a reliable determination of the mean valence of Yb ions. For YbAl2, it is evaluated to be +2.20, which remains nearly unchanged below 300 K. The Kondo resonance peak with an extremely high Kondo temperature (above 2000 K) is clearly identified in the valence-band spectra. The results indicate that a coherent Kondo state can be robust even in a nearly divalent system.
We apply our recently developed, selfconsistent renormalization group (RG) method to STM spectra of a two-impurity Kondo system consisting of two cobalt atoms connected by a one-dimensional Cu chain on a Cu surface. This RG method was developed to de scribe local spin screening in multi-impurity Kondo systems in presence of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Using the RKKY interaction of a one-dimensional chain, we explain the experimentally observed suppression and oscillation of the Kondo temperature, $T_K(y)$, as a function of the length of the chain and the corresponding RKKY interaction parameter $y$, regardless of the RKKY coupling being ferromagnetic or antiferromagnetic.
Motivated by the observation of light surface states in SmB6, we examine the effects of surface Kondo breakdown in topological Kondo insulators. We present both numerical and analytic results which show that the decoupling of the localized moments at the surface disturbs the compensation between light and heavy electrons and dopes the Dirac cone. Dispersion of these uncompensated surface states are dominated by inter-site hopping, which leads to a much lighter quasiparticles. These surface states are also highly durable against the effects of surface magnetism and decreasing thickness of the sample.
We report a systematic study of Sm valence in the prototypical intermediate valence compound SmB$_6$. Sm mean valence, $v_{rm Sm}$, was measured by X-ray absorption spectroscopy as functions of pressure ($1<P<13$ GPa) and temperature ($3<T<300$ K). P ressure induced magnetic order (MO) was detected above $P_c = 10$ GPa by resistivity measurements. A shift toward localized $4f$ state with increasing $P$ and/or $T$ is evident from an increase in $v_{rm Sm}$. However $v_{rm Sm}$ at $P_c$ is anomalously far below 3, which differs from the general case of nonmagnetic-magnetic transition in Yb and Ce compounds. From the $T$ dependence of $v_{rm Sm}(P,T)$, we found that $v_{rm Sm}(P,T)$ consists of two different characteristic components: one is associated with low-energy electronic correlations involving Kondo like behavior, and the other with high-energy valence fluctuations.
We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferro or ferromagnetically with the itinerant electrons, respectively. Using the Density Matrix Renormalization Group we find, for both mod els and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter $|J|$ we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wave lengths. These results shed new light on the zero temperature magnetic phase diagram for these models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا