ﻻ يوجد ملخص باللغة العربية
Determining the demographics of the Galactic planetary nebula (PN) population is an important goal to further our understanding of this intriguing phase of stellar evolution. The Galactic population has more than doubled in number over the last 15 years, particularly from narrowband ha surveys along the plane. In this review I will summarise these results, with emphasis on the time interval since the last IAU Symposium. These primarily optical surveys are not without their limitations and new surveys for PNe in the infrared similarly face a number of challenges. I will discuss the need for multi-wavelength approaches to discovery and analysis. The desire to have accurate volume-limited samples of Galactic PNe at our disposal is emphasised, which will be impacted with new data from the Gaia satellite mission. We need robust surveys of PNe and their central stars, especially volume-limited surveys, in order to clarify and quantify their evolutionary pathways.
I present an overview of the science goals and achievements of ongoing spectroscopic surveys of individual stars in the nearby Universe. I include a brief discussion of the development of the field of Galactic Archaeology - using the fossil record in
The Planetary Nebulae Luminosity Function (PNLF) describes the collective luminosity evolution for a given population of Planetary Nebulae (PN). A major paradox in current PNLF studies is in the universality of the absolute magnitude of the brightest
We present a summary of current research on planetary nebulae and their central stars, and related subjects such as atomic processes in ionized nebulae, AGB and post-AGB evolution. Future advances are discussed that will be essential to substantial improvements in our knowledge in the field.
We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year eclipse event of the central star has been attributed to a dust disk) using HST imaging and VLT spectroscopy, both long-slit and integral field. The central cavity of M 2-29 is f
We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evoluti