ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic Archaeology: Current Surveys

447   0   0.0 ( 0 )
 نشر من قبل Rosemary Wyse
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

I present an overview of the science goals and achievements of ongoing spectroscopic surveys of individual stars in the nearby Universe. I include a brief discussion of the development of the field of Galactic Archaeology - using the fossil record in old stars nearby to infer how our Galaxy evolved and place the Milky Way in cosmological context.



قيم البحث

اقرأ أيضاً

Simpsons paradox, or Yule-Simpson effect, arises when a trend appears in different subsets of data but disappears or reverses when these subsets are combined. We describe here seven cases of this phenomenon for chemo-kinematical relations believed to constrain the Milky Way disk formation and evolution. We show that interpreting trends in relations, such as the radial and vertical chemical abundance gradients, the age-metallicity relation, and the metallicity-rotational velocity relation (MVR), can lead to conflicting conclusions about the Galaxy past if analyses marginalize over stellar age and/or birth radius. It is demonstrated that the MVR in RAVE giants is consistent with being always strongly negative, when narrow bins of [Mg/Fe] are considered. This is directly related to the negative radial metallicity gradients of stars grouped by common age (mono-age populations) due to the inside out disk formation. The effect of the asymmetric drift can then give rise to a positive MVR trend in high-[alpha/Fe] stars, with a slope dependent on a given surveys selection function and observational uncertainties. We also study the variation of lithium abundance, A(Li), with [Fe/H] of AMBRE:HARPS dwarfs. A strong reversal in the positive A(Li)-[Fe/H] trend of the total sample is found for mono-age populations, flattening for younger groups of stars. Dissecting by birth radius shows strengthening in the positive A(Li)-[Fe/H] trend, shifting to higher [Fe/H] with decreasing birth radius; these observational results suggest new constraints on chemical evolution models. This work highlights the necessity for precise age estimates for large stellar samples covering wide spatial regions.
Chemical tagging of stellar debris from disrupted open clusters and associations underpins the science cases for next-generation multi-object spectroscopic surveys. As part of the Galactic Archaeology project TraCD (Tracking Cluster Debris), a prelim inary attempt at reconstructing the birth clouds of now phase-mixed thin disk debris is undertaken using a parametric minimum spanning tree (MST) approach. Empirically-motivated chemical abundance pattern uncertainties (for a 10-dimensional chemistry-space) are applied to NBODY6-realised stellar associations dissolved into a background sea of field stars, all evolving in a Milky Way potential. We demonstrate that significant population reconstruction degeneracies appear when the abundance uncertainties approach 0.1 dex and the parameterised MST approach is employed; more sophisticated methodologies will be required to ameliorate these degeneracies.
Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and structure of the Galaxy. But they allow for important auxiliary science: (i) Galactic interstellar med ium can be studied in four dimensions (position in space + radial velocity) through weak but numerous diffuse insterstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ~14,000 field stars with chromosperic emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.
86 - David J. Frew 2016
Determining the demographics of the Galactic planetary nebula (PN) population is an important goal to further our understanding of this intriguing phase of stellar evolution. The Galactic population has more than doubled in number over the last 15 ye ars, particularly from narrowband ha surveys along the plane. In this review I will summarise these results, with emphasis on the time interval since the last IAU Symposium. These primarily optical surveys are not without their limitations and new surveys for PNe in the infrared similarly face a number of challenges. I will discuss the need for multi-wavelength approaches to discovery and analysis. The desire to have accurate volume-limited samples of Galactic PNe at our disposal is emphasised, which will be impacted with new data from the Gaia satellite mission. We need robust surveys of PNe and their central stars, especially volume-limited surveys, in order to clarify and quantify their evolutionary pathways.
235 - Melissa Ness 2019
The next decade affords tremendous opportunity to achieve the goals of Galactic archaeology. That is, to reconstruct the evolutionary narrative of the Milky Way, based on the empirical data that describes its current morphological, dynamical, tempora l and chemical structures. Here, we describe a path to achieving this goal. The critical observational objective is a Galaxy-scale, contiguous, comprehensive mapping of the disks phase space, tracing where the majority of the stellar mass resides. An ensemble of recent, ongoing, and imminent surveys are working to deliver such a transformative stellar map. Once this empirical description of the dust-obscured disk is assembled, we will no longer be operationally limited by the observational data. The primary and significant challenge within stellar astronomy and Galactic archaeology will then be in fully utilizing these data. We outline the next-decade framework for obtaining and then realizing the potential of the data to chart the Galactic disk via its stars. One way to support the investment in the massive data assemblage will be to establish a Galactic Archaeology Consortium across the ensemble of stellar missions. This would reflect a long-term commitment to build and support a network of personnel in a dedicated effort to aggregate, engineer, and transform stellar measurements into a comprehensive perspective of our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا