ﻻ يوجد ملخص باللغة العربية
We provide a comprehensive multi-aspect study on the performance of a pipeline used by the LIGO-Virgo Collaboration for estimating parameters of gravitational-wave bursts. We add simulated signals with four different morphologies (sine-Gaussians, Gaussians, white-noise bursts, and binary black hole signals) to simulated noise samples representing noise of the two Advanced LIGO detectors during their first observing run. We recover them with the BayesWave (BW) pipeline to study its accuracy in sky localization, waveform reconstruction, and estimation of model-independent waveform parameters. BW localizes sources with a level of accuracy comparable for all four morphologies, with the median separation of actual and estimated sky locations ranging from 25.1$^{circ}$ to 30.3$^{circ}$. This is a reasonable accuracy in the two-detector case, and is comparable to accuracies of other localization methods studied previously. As BW reconstructs generic transient signals with sine-Gaussian wavelets, it is unsurprising that BW performs the best in reconstructing sine-Gaussian and Gaussian waveforms. BWs accuracy in waveform reconstruction increases steeply with network signal-to-noise ratio (SNR$_{rm net}$), reaching a $85%$ and $95%$ match between the reconstructed and actual waveform below SNR$_{rm net} approx 20$ and SNR$_{rm net} approx 50$, respectively, for all morphologies. BWs accuracy in estimating central moments of waveforms is only limited by statistical errors in the frequency domain, and is affected by systematic errors too in the time domain as BW cannot reconstruct low-amplitude parts of signals overwhelmed by noise. The figures of merit we introduce can be used in future characterizations of parameter estimation pipelines.
We describe updates and improvements to the BayesWave gravitational wave transient analysis pipeline, and provide examples of how the algorithm is used to analyze data from ground-based gravitational wave detectors. BayesWave models gravitational wav
A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal mode
One of the main bottlenecks in gravitational wave (GW) astronomy is the high cost of performing parameter estimation and GW searches on the fly. We propose a novel technique based on Reduced Order Quadratures (ROQs), an application and data-specific
The detection of electromagnetic counterparts to gravitational waves has great promise for the investigation of many scientific questions. It has long been hoped that in addition to providing extra, non-gravitational information about the sources of
We performed a search for event bursts in the XMASS-I detector associated with 11 gravitational-wave events detected during LIGO/Virgos O1 and O2 periods. Simple and loose cuts were applied to the data collected in the full 832 kg xenon volume around