ﻻ يوجد ملخص باللغة العربية
A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal models are available, such as for binary Neutron star systems, it is possible to make robust detection statements even when the noise is poorly understood. In contrast, searches for un-modeled transient signals are strongly impacted by the methods used to characterize the noise. Here we take a Bayesian approach and introduce a multi-component, variable dimension, parameterized noise model that explicitly accounts for non-stationarity and non-Gaussianity in data from interferometric gravitational wave detectors. Instrumental transients (glitches) and burst sources of gravitational waves are modeled using a Morlet-Gabor continuous wavelet frame. The number and placement of the wavelets is determined by a trans-dimensional Reversible Jump Markov Chain Monte Carlo algorithm. The Gaussian component of the noise and sharp line features in the noise spectrum are modeled using the BayesLine algorithm, which operates in concert with the wavelet model.
Gravitational wave data from ground-based detectors is dominated by instrument noise. Signals will be comparatively weak, and our understanding of the noise will influence detection confidence and signal characterization. Mis-modeled noise can produc
We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalising flows and incorporate it into our sampler nessai. Nessai is designed for problems where computing the li
Third-generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high si
We describe updates and improvements to the BayesWave gravitational wave transient analysis pipeline, and provide examples of how the algorithm is used to analyze data from ground-based gravitational wave detectors. BayesWave models gravitational wav
Transient non-gaussian noise in gravitational wave detectors, commonly referred to as glitches, pose challenges for inference of the astrophysical properties of detected signals when the two are coincident in time. Current analyses aim towards modeli