ﻻ يوجد ملخص باللغة العربية
In many macroscopic dynamic wetting problems, it is assumed that the macroscopic interface is quasistatic, and the dissipation appears only in the region close to the contact line. When approaching the moving contact line, a microscopic mechanism is required to regularize the singularity of viscous dissipation. On the other hand, if the characteristic size of a fluidic system is reduced to a range comparable to the microscopic regularization length scale, the assumption that viscous effects are localized near the contact line is no longer justified. In the present work, such microscopic length is the slip length. We investigate the dewetting of a droplet using the boundary element method. Specifically, we solve for the axisymmetric Stokes flow with i) the Navier-slip boundary condition at the solid/liquid boundary, and ii) a time-independent microscopic contact angle at the contact line. The profile evolution is computed for different slip lengths and equilibrium contact angles. When decreasing the slip length, the typical nonsphericity first increases, reaches a maximum at a characteristic slip length $tilde{b}_m$, and then decreases. Regarding different equilibrium contact angles, two universal rescalings are proposed to describe the behavior for slip lengths larger or smaller than $tilde{b}_m$. Around $tilde{b}_m$, the early time evolution of the profiles at the rim can be described by similarity solutions. The results are explained in terms of the structure of the flow field governed by different dissipation channels: viscous elongational flows for large slip lengths, friction at the substrate for intermediate slip lengths, and viscous shear flows for small slip lengths. Following the transitions between these dominant dissipation mechanisms, our study indicates a crossover to the quasistatic regime when the slip length is small compared to the droplet size.
We study the dewetting of liquid films capped by a thin elastomeric layer. When the tension in the elastomer is isotropic, circular holes grow at a rate which decreases with increasing tension. The morphology of holes and rim stability can be control
A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched
Based on mesoscale lattice Boltzmann (LB) numerical simulations, we investigate the effects of viscoelasticity on the break-up of liquid threads in microfluidic cross-junctions, where droplets are formed by focusing a liquid thread of a dispersed (d)
We present results on the leveling of polymer microdroplets on thin films prepared from the same material. In particular, we explore the crossover from a droplet spreading on an infinitesimally thin film (Tanners law regime) to that of a droplet leve
We study numerically the effect of thermal fluctuations and of variable fluid-substrate interactions on the spontaneous dewetting of thin liquid films. To this aim, we use a recently developed lattice Boltzmann method for thin liquid film flows, equi