ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of slippage on the dewetting of a droplet

105   0   0.0 ( 0 )
 نشر من قبل Thomas Salez
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In many macroscopic dynamic wetting problems, it is assumed that the macroscopic interface is quasistatic, and the dissipation appears only in the region close to the contact line. When approaching the moving contact line, a microscopic mechanism is required to regularize the singularity of viscous dissipation. On the other hand, if the characteristic size of a fluidic system is reduced to a range comparable to the microscopic regularization length scale, the assumption that viscous effects are localized near the contact line is no longer justified. In the present work, such microscopic length is the slip length. We investigate the dewetting of a droplet using the boundary element method. Specifically, we solve for the axisymmetric Stokes flow with i) the Navier-slip boundary condition at the solid/liquid boundary, and ii) a time-independent microscopic contact angle at the contact line. The profile evolution is computed for different slip lengths and equilibrium contact angles. When decreasing the slip length, the typical nonsphericity first increases, reaches a maximum at a characteristic slip length $tilde{b}_m$, and then decreases. Regarding different equilibrium contact angles, two universal rescalings are proposed to describe the behavior for slip lengths larger or smaller than $tilde{b}_m$. Around $tilde{b}_m$, the early time evolution of the profiles at the rim can be described by similarity solutions. The results are explained in terms of the structure of the flow field governed by different dissipation channels: viscous elongational flows for large slip lengths, friction at the substrate for intermediate slip lengths, and viscous shear flows for small slip lengths. Following the transitions between these dominant dissipation mechanisms, our study indicates a crossover to the quasistatic regime when the slip length is small compared to the droplet size.



قيم البحث

اقرأ أيضاً

We study the dewetting of liquid films capped by a thin elastomeric layer. When the tension in the elastomer is isotropic, circular holes grow at a rate which decreases with increasing tension. The morphology of holes and rim stability can be control led by changing the boundary conditions and tension in the capping film. When the capping film is prepared with a biaxial tension, holes form with a non-circular shape elongated along the high tension axis. With suitable choice of elastic boundary conditions, samples can even be designed such that square holes appear.
A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum speed of dewetting. For all radii we find the maximum speed occurs at vanishing apparent contact angle. To further investigate the transition we numerically determine the bifurcation diagram for steady menisci. It is found that the meniscus profiles on thick fibers are smooth, even when there is a film deposited between the bath and the contact line, while profiles on thin fibers exhibit strong oscillations. We discuss how this could lead to different experimental scenarios of film deposition.
Based on mesoscale lattice Boltzmann (LB) numerical simulations, we investigate the effects of viscoelasticity on the break-up of liquid threads in microfluidic cross-junctions, where droplets are formed by focusing a liquid thread of a dispersed (d) phase into another co-flowing continuous (c) immiscible phase. Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) to droplet formation downstream of the cross-junction (DC) (Liu $&$ Zhang, ${it Phys. ~Fluids.}$ ${bf 23}$, 082101 (2011)). We will analyze cases with ${it Droplet ~Viscoelasticity}$ (DV), where viscoelastic properties are confined in the dispersed phase, as well as cases with ${it Matrix ~Viscoelasticity}$ (MV), where viscoelastic properties are confined in the continuous phase. Moderate flow-rate ratios $Q approx {cal O}(1)$ of the two phases are considered in the present study. Overall, we find that the effects are more pronounced in the case with MV, where viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel. Quantitative predictions on the break-up point of the threads are provided as a function of the Deborah number, i.e. the dimensionless number measuring the importance of viscoelasticity with respect to Capillary forces.
We present results on the leveling of polymer microdroplets on thin films prepared from the same material. In particular, we explore the crossover from a droplet spreading on an infinitesimally thin film (Tanners law regime) to that of a droplet leve ling on a film thicker than the droplet itself. In both regimes, the droplets excess surface area decreases towards the equilibrium configuration of a flat liquid film, but with a different power law in time. Additionally, the characteristic leveling time depends on molecular properties, the size of the droplet, and the thickness of the underlying film. Flow within the film makes this system fundamentally different from a droplet spreading on a solid surface. We thus develop a theoretical model based on thin film hydrodynamics that quantitatively describes the observed crossover between the two leveling regimes.
We study numerically the effect of thermal fluctuations and of variable fluid-substrate interactions on the spontaneous dewetting of thin liquid films. To this aim, we use a recently developed lattice Boltzmann method for thin liquid film flows, equi pped with a properly devised stochastic term. While it is known that thermal fluctuations yield shorter rupture times, we show that this is a general feature of hydrophilic substrates, irrespective of the contact angle. The ratio between deterministic and stochastic rupture times, though, decreases with $theta$. Finally, we discuss the case of fluctuating thin film dewetting on chemically patterned substrates and its dependence on the form of the wettability gradients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا