ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Z-Gates for Quantum Computing

199   0   0.0 ( 0 )
 نشر من قبل David McKay C
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these drives can be used to generate zero-duration arbitrary virtual Z-gates which, combined with two $X_{pi/2}$ gates, can generate any SU(2) gate. Here we show how to best utilize these virtual Z-gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z-gates and show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z-gates can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse shaping techniques such as DRAG. We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z-gates to correct rotation errors (DRAGZ) realizes a 13.3~ns $X_{pi/2}$ gate characterized by low error ($1.95[3]times 10^{-4}$) and low leakage ($3.1[6]times 10^{-6}$). Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders-of-magnitude smaller than pulse errors due to decoherence.

قيم البحث

اقرأ أيضاً

For the last few years, the NASA Quantum Artificial Intelligence Laboratory (QuAIL) has been performing research to assess the potential impact of quantum computers on challenging computational problems relevant to future NASA missions. A key aspect of this research is devising methods to most effectively utilize emerging quantum computing hardware. Research questions include what experiments on early quantum hardware would give the most insight into the potential impact of quantum computing, the design of algorithms to explore on such hardware, and the development of tools to minimize the quantum resource requirements. We survey work relevant to these questions, with a particular emphasis on our recent work in quantum algorithms and applications, in elucidating mechanisms of quantum mechanics and their uses for quantum computational purposes, and in simulation, compilation, and physics-inspired classical algorithms. To our early application thrusts in planning and scheduling, fault diagnosis, and machine learning, we add thrusts related to robustness of communication networks and the simulation of many-body systems for material science and chemistry. We provide a brief update on quantum annealing work, but concentrate on gate-model quantum computing research advances within the last couple of years.
We present a number of quantum computing patterns that build on top of fundamental algorithms, that can be applied to solving concrete, NP-hard problems. In particular, we introduce the concept of a quantum dictionary as a summation of multiple patte rns and algorithms, and show how it can be applied in the context of Quadratic Unconstrained Binary Optimization (QUBO) problems. We start by presenting a visual approach to quantum computing, which avoids a heavy-reliance on quantum mechanics, linear algebra, or complex mathematical notation, and favors geometrical intuition and computing paradigms. We also provide insights on the fundamental quantum computing algorithms (Fourier Transforms, Phase Estimation, Grover, Quantum Counting, and Amplitude Estimation).
Trapped-ion quantum computers have demonstrated high-performance gate operations in registers of about ten qubits. However, scaling up and parallelizing quantum computations with long one-dimensional (1D) ion strings is an outstanding challenge due t o the global nature of the motional modes of the ions which mediate qubit-qubit couplings. Here, we devise methods to implement scalable and parallel entangling gates by using engineered localized phonon modes. We propose to tailor such localized modes by tuning the local potential of individual ions with programmable optical tweezers. Localized modes of small subsets of qubits form the basis to perform entangling gates on these subsets in parallel. We demonstrate the inherent scalability of this approach by presenting analytical and numerical results for long 1D ion chains and even for infinite chains of uniformly spaced ions. Furthermore, we show that combining our methods with optimal coherent control techniques allows to realize maximally dense universal parallelized quantum circuits.
Hybrid quantum registers, such as electron-nuclear spin systems, have emerged as promising hardware for implementing quantum information and computing protocols in scalable systems. Nevertheless, the coherent control of such systems still faces chall enges. Particularly, the lower gyromagnetic ratios of the nuclear spins cause them to respond slowly to control fields, resulting in gate times that are generally longer than the coherence time of the electron spin. Here, we demonstrate a scheme for circumventing this problem by indirect control: We apply a small number of short pulses only to the electron spin and let the full system undergo free evolution under the hyperfine coupling between the pulses. Using this scheme, we realize robust quantum gates in an electron-nuclear spin system, including a Hadamard gate on the nuclear spin and a controlled-NOT gate with the nuclear spin as the target qubit. The durations of these gates are shorter than the electron spin coherence time, and thus additional operations to extend the system coherence time are not needed. Our demonstration serves as a proof of concept for achieving efficient coherent control of electron-nuclear spin systems, such as NV centers in diamond. Our scheme is still applicable when the nuclear spins are only weakly coupled to the electron spin.
We present a linear optics quantum computation scheme with a greatly reduced cost in resources compared to KLM. The scheme makes use of elements from cluster state computation and achieves comparable resource usage to those schemes while retaining the circuit based approach of KLM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا