ترغب بنشر مسار تعليمي؟ اضغط هنا

Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering

64   0   0.0 ( 0 )
 نشر من قبل Yash Goyal
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Problems at the intersection of vision and language are of significant importance both as challenging research questions and for the rich set of applications they enable. However, inherent structure in our world and bias in our language tend to be a simpler signal for learning than visual modalities, resulting in models that ignore visual information, leading to an inflated sense of their capability. We propose to counter these language priors for the task of Visual Question Answering (VQA) and make vision (the V in VQA) matter! Specifically, we balance the popular VQA dataset by collecting complementary images such that every question in our balanced dataset is associated with not just a single image, but rather a pair of similar images that result in two different answers to the question. Our dataset is by construction more balanced than the original VQA dataset and has approximately twice the number of image-question pairs. Our complete balanced dataset is publicly available at www.visualqa.org as part of the 2nd iteration of the Visual Question Answering Dataset and Challenge (VQA v2.0). We further benchmark a number of state-of-art VQA models on our balanced dataset. All models perform significantly worse on our balanced dataset, suggesting that these models have indeed learned to exploit language priors. This finding provides the first concrete empirical evidence for what seems to be a qualitative sense among practitioners. Finally, our data collection protocol for identifying complementary images enables us to develop a novel interpretable model, which in addition to providing an answer to the given (image, question) pair, also provides a counter-example based explanation. Specifically, it identifies an image that is similar to the original image, but it believes has a different answer to the same question. This can help in building trust for machines among their users.



قيم البحث

اقرأ أيضاً

Visual Question Answering (VQA) is of tremendous interest to the research community with important applications such as aiding visually impaired users and image-based search. In this work, we explore the use of scene graphs for solving the VQA task. We conduct experiments on the GQA dataset which presents a challenging set of questions requiring counting, compositionality and advanced reasoning capability, and provides scene graphs for a large number of images. We adopt image + question architectures for use with scene graphs, evaluate various scene graph generation techniques for unseen images, propose a training curriculum to leverage human-annotated and auto-generated scene graphs, and build late fusion architectures to learn from multiple image representations. We present a multi-faceted study into the use of scene graphs for VQA, making this work the first of its kind.
Deep neural networks have shown striking progress and obtained state-of-the-art results in many AI research fields in the recent years. However, it is often unsatisfying to not know why they predict what they do. In this paper, we address the problem of interpreting Visual Question Answering (VQA) models. Specifically, we are interested in finding what part of the input (pixels in images or words in questions) the VQA model focuses on while answering the question. To tackle this problem, we use two visualization techniques -- guided backpropagation and occlusion -- to find important words in the question and important regions in the image. We then present qualitative and quantitative analyses of these importance maps. We found that even without explicit attention mechanisms, VQA models may sometimes be implicitly attending to relevant regions in the image, and often to appropriate words in the question.
253 - Huijuan Xu , Kate Saenko 2015
We address the problem of Visual Question Answering (VQA), which requires joint image and language understanding to answer a question about a given photograph. Recent approaches have applied deep image captioning methods based on convolutional-recurr ent networks to this problem, but have failed to model spatial inference. To remedy this, we propose a model we call the Spatial Memory Network and apply it to the VQA task. Memory networks are recurrent neural networks with an explicit attention mechanism that selects certain parts of the information stored in memory. Our Spatial Memory Network stores neuron activations from different spatial regions of the image in its memory, and uses the question to choose relevant regions for computing the answer, a process of which constitutes a single hop in the network. We propose a novel spatial attention architecture that aligns words with image patches in the first hop, and obtain improved results by adding a second attention hop which considers the whole question to choose visual evidence based on the results of the first hop. To better understand the inference process learned by the network, we design synthetic questions that specifically require spatial inference and visualize the attention weights. We evaluate our model on two published visual question answering datasets, DAQUAR [1] and VQA [2], and obtain improved results compared to a strong deep baseline model (iBOWIMG) which concatenates image and question features to predict the answer [3].
In this paper, we introduce a new dataset consisting of 360,001 focused natural language descriptions for 10,738 images. This dataset, the Visual Madlibs dataset, is collected using automatically produced fill-in-the-blank templates designed to gathe r targeted descriptions about: people and objects, their appearances, activities, and interactions, as well as inferences about the general scene or its broader context. We provide several analyses of the Visual Madlibs dataset and demonstrate its applicability to two new description generation tasks: focused description generation, and multiple-choice question-answering for images. Experiments using joint-embedding and deep learning methods show promising results on these tasks.
Understanding images and text together is an important aspect of cognition and building advanced Artificial Intelligence (AI) systems. As a community, we have achieved good benchmarks over language and vision domains separately, however joint reasoni ng is still a challenge for state-of-the-art computer vision and natural language processing (NLP) systems. We propose a novel task to derive joint inference about a given image-text modality and compile the Visuo-Linguistic Question Answering (VLQA) challenge corpus in a question answering setting. Each dataset item consists of an image and a reading passage, where questions are designed to combine both visual and textual information i.e., ignoring either modality would make the question unanswerable. We first explore the best existing vision-language architectures to solve VLQA subsets and show that they are unable to reason well. We then develop a modular method with slightly better baseline performance, but it is still far behind human performance. We believe that VLQA will be a good benchmark for reasoning over a visuo-linguistic context. The dataset, code and leaderboard is available at https://shailaja183.github.io/vlqa/.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا