ﻻ يوجد ملخص باللغة العربية
In addition to the well known case of spherical coordinates the hydrogen atom separates in three further coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators. We show that the joint spectrum of the Hamilton operator, and the $z$-components of the angular momentum and quantum Laplace-Runge-Lenz vectors obtained from separation in prolate spheroidal coordinates has quantum monodromy for energies sufficiently close to the ionization threshold. This means that one cannot globally assign quantum numbers to the joint spectrum. Whereas the principal quantum number $n$ and the magnetic quantum number $m$ correspond to the Bohr-Sommerfeld quantization of globally defined classical actions a third quantum number cannot be globally defined because the third action is globally multi valued.
We discuss an extension of the Jimbo-Miwa-Ueno differential 1-form to a form closed on the full space of extended monodromy data of systems of linear ordinary differential equations with rational coefficients. This extension is based on the results o
A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetr
An integrable Hamiltonian system presents monodromy if the action-angle variables cannot be defined globally. We consider a classical system with azimuthal symmetry and explore the topology structure of its phase space. Based on the behavior of close
The notion of monodromy was introduced by J. J. Duistermaat as the first obstruction to the existence of global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied since then and was shown to be non-trivial in
The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators, one of which is the Hamiltonian. We show that the joint sp