ترغب بنشر مسار تعليمي؟ اضغط هنا

Defect in the Joint Spectrum of Hydrogen due to Monodromy

138   0   0.0 ( 0 )
 نشر من قبل Holger Waalkens
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In addition to the well known case of spherical coordinates the hydrogen atom separates in three further coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators. We show that the joint spectrum of the Hamilton operator, and the $z$-components of the angular momentum and quantum Laplace-Runge-Lenz vectors obtained from separation in prolate spheroidal coordinates has quantum monodromy for energies sufficiently close to the ionization threshold. This means that one cannot globally assign quantum numbers to the joint spectrum. Whereas the principal quantum number $n$ and the magnetic quantum number $m$ correspond to the Bohr-Sommerfeld quantization of globally defined classical actions a third quantum number cannot be globally defined because the third action is globally multi valued.



قيم البحث

اقرأ أيضاً

386 - A. Its , O. Lisovyy , A. Prokhorov 2016
We discuss an extension of the Jimbo-Miwa-Ueno differential 1-form to a form closed on the full space of extended monodromy data of systems of linear ordinary differential equations with rational coefficients. This extension is based on the results o f M. Bertola generalizing a previous construction by B. Malgrange. We show how this 1-form can be used to solve a long-standing problem of evaluation of the connection formulae for the isomonodromic tau functions which would include an explicit computation of the relevant constant factors. We explain how this scheme works for Fuchsian systems and, in particular, calculate the connection constant for generic Painleve VI tau function. The result proves the conjectural formula for this constant proposed in cite{ILT13}. We also apply the method to non-Fuchsian systems and evaluate constant factors in the asymptotics of Painleve II tau function.
A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetr y. The high number of symmetries (both geometrical and dynamical) exhibited by the classical systems has a counterpart in the accidental degeneracy in the spectrum of the quantum systems. This family of quantum problem is completely solved with the techniques of the SUSYQM (supersymmetric quantum mechanics). We also analyze in detail the ordering problem arising in the quantization of the kinetic term of the classical Hamiltonian, stressing the link existing between two physically meaningful quantizations: the geometrical quantization and the position dependent mass quantization.
An integrable Hamiltonian system presents monodromy if the action-angle variables cannot be defined globally. We consider a classical system with azimuthal symmetry and explore the topology structure of its phase space. Based on the behavior of close d orbits around singular points or regions of the energy-momentum plane, a semi-theoretical method is derived to detect classical monodromy. The validity of the monodromy test is numerically illustrated for several systems with azimuthal symmetry.
The notion of monodromy was introduced by J. J. Duistermaat as the first obstruction to the existence of global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied since then and was shown to be non-trivial in various concrete examples of finite-dimensional integrable systems. The goal of the present paper is to give a brief overview of monodromy and discuss some of its generalisations. In particular, we will discuss the monodromy around a focus-focus singularity and the notions of quantum, fractional and scattering monodromy. The exposition will be complemented with a number of examples and open problems.
The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators, one of which is the Hamiltonian. We show that the joint sp ectrum of the Hamilton operator, the $z$ component of the angular momentum, and a quartic integral obtained from separation in prolate spheroidal coordinates has quantum monodromy for sufficiently large energies. This means that one cannot globally assign quantum numbers to the joint spectrum. The effect can be classically explained by showing that the corresponding Liouville integrable system has a non-degenerate focus-focus point, and hence Hamiltonian monodromy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا