ترغب بنشر مسار تعليمي؟ اضغط هنا

Faraday tomography of the local interstellar medium with LOFAR: Galactic foregrounds towards IC342

211   0   0.0 ( 0 )
 نشر من قبل Cameron Van Eck
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The new generation of low-frequency radio telescopes, such as the Low Frequency Array (LOFAR: a Square Kilometre Array-low pathfinder), provides advancements in our capability of probing Galactic magnetism through low-frequency polarimetry. Maps of diffuse polarized radio emission and Faraday rotation can be used to infer properties of, and trace structure in, the magnetic fields in the ISM. However, to date very little of the sky has been probed at high angular and Faraday depth resolution. We observed a 5x5 degree region centred on the nearby galaxy IC342 using LOFAR in the frequency range 115-178 MHz at 4 arcmin resolution and performed Faraday tomography to detect foreground Galactic polarized synchrotron emission separated by Faraday depth (different amounts of Faraday rotation). Our Faraday depth cube shows rich polarized structure, with up to 30 K of polarized emission at 150 MHz. We detect two overlapping diffuse polarized features that are clearly separated in Faraday depth. Faraday-thick structures at such low frequencies would be too strongly depolarized to explain the observations and are therefore rejected. Only Faraday thin structures will not be strongly depolarized; producing such structures requires localized variations in the ratio of synchrotron emissivity to Faraday depth per unit distance, which can arise from several physical phenomena, such as a transition between regions of ionized and neutral gas. We conclude that the observed polarized emission is Faraday thin, and propose that the emission originates from two neutral clouds in the local ISM. We have modeled the Faraday rotation for this line of sight and estimated that the line of sight component of magnetic field of the local ISM for this direction varies between -0.86 and +0.12 uG. We propose that this may be a useful method for mapping magnetic fields within the local ISM.

قيم البحث

اقرأ أيضاً

With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$r{A}$, 5780$r{A}$, 5797$r{A}$, 6284$r{A}$) and properties of the target stars (colour excess values, distances and Galactic coordinates). Many different plots of the diffuse interstellar bands and their maps were produced and further analysed. There appears to be a structure in the plot of equivalent widths of 5780$r{A}$ DIB (and 6284$r{A}$ DIB) against the Galactic $x$-coordinate. The structure is well defined below $sim150$ m$r{A}$ and within $|x|<250$ pc, peaking around $x=170$ pc. We argue that the origin of this structure is not a statistical fluctuation. Splitting the data in the Galactic longitude into several subregions improves or lowers the well known linear relation between the equivalent widths and the colour excess, which was expected. However, some of the lines of sight display drastically different behaviour. The region within $150^circ<l<200^circ$ shows scatter in the correlation plots with the colour excess for all of the four bands with correlation coefficients $textrm{R}<0.58$. We suspect that the variation of physical conditions in the nearby molecular clouds could be responsible. Finally, the area $250^circ<l<300^circ$ displays (from the statistical point of view) significantly lower values of equivalent widths than the other regions -- this tells us that there is either a significant underabundance of carriers (when compared with the other regions) or that this has to be a result of an observational bias.
61 - C. Sobey 2019
We determined Faraday rotation measures (RMs) towards 137 pulsars in the northern sky, using Low-Frequency Array (LOFAR) observations at 110-190 MHz. This low-frequency RM catalogue, the largest to date, improves the precision of existing RM measurem ents on average by a factor of 20 - due to the low frequency and wide bandwidth of the data, aided by the RM synthesis method. We report RMs towards 25 pulsars for the first time. The RMs were corrected for ionospheric Faraday rotation to increase the accuracy of our catalogue to approximately 0.1 rad m$^{rm -2}$. The ionospheric RM correction is currently the largest contributor to the measurement uncertainty. In addition, we find that the Faraday dispersion functions towards pulsars are extremely Faraday thin - mostly less than 0.001 rad m$^{rm -2}$. We use these new precise RM measurements (in combination with existing RMs, dispersion measures, and distance estimates) to estimate the scale height of the Galactic halo magnetic field: 2.0$pm$0.3 kpc for Galactic quadrants I and II above and below the Galactic plane (we also evaluate the scale height for these regions individually). Overall, our initial low-frequency catalogue provides valuable information about the 3-D structure of the Galactic magnetic field.
Faraday rotation occurs along every line of sight in the Galaxy; Rotation Measure (RM) synthesis allows a three-dimensional representation of the interstellar magnetic field. This study uses data from the Global Magneto-Ionic Medium Survey, a combina tion of single-antenna spectro-polarimetric studies, including northern sky data from the DRAO 26-m Telescope (1270-1750 MHz) and southern sky data from the Parkes 64-m Telescope (300-480 MHz). From the synthesized Faraday spectral cubes we compute the zeroth, first, and second moments to find the total polarized emission, mean and RM-width of the polarized emission. From DRAO first moments we find a weak vertical field directed from Galactic North to South, but Parkes data reveal fields directed towards the Sun at high latitudes in both hemispheres: the two surveys clearly sample different volumes. DRAO second moments show feature widths in Faraday spectra increasing with decreasing positive latitudes, implying that longer lines of sight encounter more Faraday rotating medium, but this is not seen at negative latitudes. Parkes data show the opposite: at positive latitudes the second moment decreases with decreasing latitude, but not at negative latitudes. Comparing first moments with RMs of pulsars and extragalactic sources and a study of depolarization together confirm that the DRAO survey samples to larger distances than the Parkes data. Emission regions in the DRAO survey are typically 700 to 1000 pc away, slightly beyond the scale-height of the magneto-ionic medium; emission detected in the Parkes survey is entirely within the magneto-ionic disk, less than 500 pc away.
Three-dimensional maps of the Galactic interstellar medium are general astrophysical tools. Reddening maps may be based on the inversion of color excess measurements for individual target stars or on statistical methods using stellar surveys. Three-d imensional maps based on diffuse interstellar bands (DIBs) have also been produced. All methods benefit from the advent of massive surveys and from Gaia data. We first updated our previous local dust maps based on a regularized Bayesian inversion of individual color excess data by replacing Hipparcos or photometric distances with Gaia Data Release 1 values when available. Secondly, we complemented this database with a series of ~5,000 color excess values estimated from the strength of the lambda 15273 DIB toward stars from SDSS/APOGEE, possessing a Gaia parallax. Third, we computed a low-resolution map based on a grid of Pan-STARRS reddening measurements by means of a new hierarchical technique and used this map as the prior distribution during the inversion of the two other datasets. Here we present a first attempt to combine different datasets and methods to improve the local maps. The use of Gaia parallaxes introduces significant changes in some areas and globally increases the compactness of the structures. Additional DIB-based data make it possible to assign distances to clouds located behind closer opaque structures and do not introduce contradictory information for the close structures. A more realistic prior distribution instead of a plane-parallel homogeneous distribution helps better define the structures. We validated the results through comparisons with other maps and with soft X-ray data. Our study demonstrates that the combination of various tracers is a potential tool for more accurate maps. An online tool makes it possible to retrieve maps and reddening estimations (http://stilism.obspm.fr).
Maps of Galactic polarized continuum emission at 1408, 1660, and 1713 MHz towards the local Taurus molecular cloud complex were made with the Effelsberg 100-m telescope. Minima in the polarized emission which are located at the boundary of a molecula r cloud were detected. Beside high rotation measures and unusual spectral indices of the polarized intensity, these features are associated with the molecular gas. At the higher frequencies the minima get less distinct. We have modelled the multi-frequency observations by placing magneto-ionic Faraday screens at the distance of the molecular cloud. In this model Faraday rotated background emission adds to foreground emission towards these screens. The systematic variation of the observed properties is the result of different line-of-sight lengths through the screen assuming spherical symmetry. For a distance of 140 pc to the Taurus clouds the physical sizes of the Faraday screens are of the order of 2 pc. In this paper we describe the data calibration and modelling process for one such object. We find an intrinsic rotation measure of about -29 rad/m^{2} to model the observations. It is pointed out that the observed rotation measure differs from the physical. Further observational constraints from H-alpha observations limit the thermal electron density to less than 0.8 cm^{-3}, and we conclude that the regular magnetic field strength parallel to the line-of-sight exceeds 20 micro Gauss to account for the intrinsic rotation measure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا