ﻻ يوجد ملخص باللغة العربية
We have performed electronic state calculations to clarify the initial stage of the oxidation of the Si- and C-faces in 4H-SiC based on the density-functional theory. We investigate how each Si and C atomic site is oxidized on C- and Si-face, and explore most probable reaction pathways, corresponding energy barriers, and possible defects generated during the oxidation. We have found that carbon annihilation process is different between on Si- and on C-face, and this difference causes different defects in interface; In C-face case, (1), carbon atoms are dissociated directly from the substrate as CO molecules. (2), after CO dissociation, 3-fold coordinated oxygen atoms (called Y-lid) are observed at the interface. (3), high density of C-dangling bonds can remain at the interface. In Si-face case, (1), C atoms inevitably form carbon nano clusters (composed of a few atoms) in interface to reduce the number of dangling bonds there. Moreover, we have found that the carbon nano clusters are composed of not only single but also double chemical bonds. (2), We have observed that CO molecules are dissociated from the carbon nano clusters in MD simulations. Furthermore, we have investigated whether H$_2$ and NO molecules react with the defects found in this study.
The doping dependence of dry thermal oxidation rates in n-type 4H-SiC was investigated. The oxidation was performed in the temperature range 1000C to 1200C for samples with nitrogen doping in the range of 6.5e15/cm3 to 9.3e18/cm3, showing a clear dop
We present a structural analysis of the graphene-4HSiC(0001) interface using surface x-ray reflectivity. We find that the interface is composed of an extended reconstruction of two SiC bilayers. The interface directly below the first graphene sheet i
We present a structural analysis of the multi-layer graphene-4HSiC(000-1}) system using Surface X-Ray Reflectivity. We show for the first time that graphene films grown on the C-terminated (000-1}) surface have a graphene-substrate bond length that i
Graphitization of the 6H-SiC(0001) surface as a function of annealing temperature has been studied by ARPES, high resolution XPS, and LEED. For the initial stage of graphitization - the 6root3 reconstructed surface - we observe sigma-bands characteri
Silicon carbide (SiC) is an excellent substrate for growth and manipulation of large scale, high quality epitaxial graphene. On the carbon face (the ($bar{1}bar{1}bar{1}$) or $(000bar{1}$) face, depending on the polytype), the onset of graphene growt